AMD ¢t

AMD64 Technology

AMDG64 Architecture
Programmer’s Manual
Volume 3:

General-Purpose and System
Instructions

Advanced Micro Devices £\

AMDA

© 2002, 2003, 2004, 2005 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc.
("AMD") products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Trademarks

AMD, the AMD arrow logo, and combinations thereof, and 3DNow! are trademarks, and AMD-K6 and AMD Athlon are registered trade-
marks of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDA

24594 Rev. 3.10 February 2005 AMDé64 Technology
Contents

Figures ix

Tables xi

Revision History Xiii

Preface XV

About ThisBook....... i, XV

Audience. e e XV

Contact Information. XV

Organizationuiiiiiiiinnneeeeeennnnnns XV

Definitions. i e XVi

Related Documents iiiinnnn... xxvii

1 Instruction Formats 1

1.1 Instruction Byte Order 1

1.2 Instruction Prefixes. i 3

Summary of Legacy Prefixes 3

Operand-Size Override Prefix 5

Address-Size Override Prefix........................... 6

Segment-Override Prefixes 9

Lock Prefix. i 10

Repeat Prefixes.......... 10

REX Prefixesoiii i 14

1.3 OPCOAE ..ttt e e 20

1.4 ModRM and SIBBytescoiiiiiiiiinennnnn. 20

1.5 Displacement Bytes. 22

1.6 Immediate Bytes i 23

1.7 RIP-Relative Addressing, 23

Encoding.t e e 24

REX Prefix and RIP-Relative Addressing. 24

Address-Size Prefix and RIP-Relative Addressing. 25

2 Instruction Overview 27

21 Instruction Subsets 27

2.2 Reference-Page Format 28

2.3 Summary of Registers and Data Types.................. 30

General-Purpose Instructions.ouuuuuuna.. 30

System INStructions.o i ittt ittt i it 33

128-Bit Media Instructions, .. 35

64-Bit Media Instructionsc.cuuuuunnnnnnnn 38

x87 Floating-Point Instructions 40

2.4 Summary of Exceptionsuuuiiinann 41

2.5 A\ - U o) o PP 43

Contents iii

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic SYNtaxovvttte et eene e 43
Opcode SyNtax. .. oov ittt et e e 46
Pseudocode Definitions 49

3 General-Purpose Instruction Reference 59
A A A e e 61
AAD L e e e 62
AAM . e e e 63
AAS . e e 64
ADC. . e e e e 65
ADD .. e 67
AND e 69
BOUND . .. e e e e e e 72
BSE . e e e 74
BSOR . e e 76
BSWAP .. e 78
BT e e e 79
BT C . . e e e 81
BT R .. e e 83
B S o e e e 85
CALL (NEAT). « « « e e et et e e e e e e e e 87
CALL (Far) . . ¢ oot e ettt 89
CBW L e e e 96
CWDE . . e e e 96
CDOQE ..o ote et 96
CW D L e e e 97
(61516 J 97
CQO. e e 97
L P 98
CLD . .t e e e 99
CLELUSH. . ..ot e et ettt 100
CMIC . e e e e e e 102
CMOVCC .ttt e e e e e e e e 103
CM P .. e 107
CM PSS .. e e 110
CMPSB ... e 110
CM P S W . . e e e e e 110
CM P S D . .. e e e e 110
CM P SO . .ot e e e e 110
CMPXCHG. ...ttt et e e et e e e 113
CMPXCHGSB. . ..ottt e e ettt 115
CMPXCHGIO6B. i e e e 115
L0 = 6) 1 117
DA A, e e e 136
DAS . e e 137
DEC. .. e e 138
DIV e e 140
ENTER ... e e e e 142

iv Contents

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
IDIV e e 144
IMUL. .. e e e e 146
IN. e e 149
INC . e e 151
INS e e e 153
INSB .. e e e 153
INSW . e 153
INSD .. e e 153
INT .o e e 156
INTO . . e e e 164
Jec . e 165
[0« 169
JECXZ .. e e e e 169
JRCXZ . e 169
JMP (Near). . . ovo it et ettt 171
TMP (FaT) .« o o e e e e e e e e e e e 173
LAHE ... e e 178
LD . e e e 179
LES (e e e 179
LES o e e 179
LGS . e 179
LSS e e 179
LE A . e e e 182
LEAVE .. e e e 184
LEENCE e e e 186
LODS. . . e 187
LODSB ... e 187
LODSW . .o e 187
LODSD ..o e e e 187
LODSO .. e e e e 187
LOOPCC. ..o e e 189
MFEFENCE e e e 191
MOV e e 192
MOV . . e e 196
MOVMSKPD. i e e et e e e 199
MOVMSKPS e e e e e 201
MOVNTI. ... e et et 203
MOV S e e 205
MOVSB . . e e e 205
MOV SW e e 205
MOV SD . . e e 205
MOV SO . . e e 205
MOV S X . . e 207
MOVSXD .. e e 208
MOV Z X . o e e e e 209
MUL .. e e e 210
NEG. . .. e e 212

Contents v

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
NOP. . e e e 214
NOT . . e e 215
OR . e e e e 216
10 1 219
OUTS . e e et e e e e e 221
OUTSB ... e e et e e i 221
OU T SW . . e e e e e e e e e 221
OUTSD ... e e e e e e 221
POP . . e 223
POPAX. . . e 226
POPEX. .. e e 227
PREFETCHXt e it 230
PREFETCHlIevel. i 232
PUSH ... e 234
PUSHAX . . e 236
PUSHE X . . e e e 237
) 239
S 242
RET (Near). . ..coi ittt ettt 245
RET (Far) . .. oi e e e ettt 247
ROL. .. e 251
ROR. .. e e 253
SAHE .. e e e 255
SAL . e e e 256
SHL . . . e e e e 256
SAR . . e e e 259
SBB . . e e 262
SCAS . e e e 265
SCASB. .. e e 265
SCASW L e e e 265
SCASD ... e e e 265
SCASQ - v v et et 265
SETCC .ottt e 267
SFENCE ... e e 270
= 1 271
SHLD ... e e e e 272
SHER. . . e e e 274
SHRD e e e e 276
ST C . e e 278
s 1 D 279
ST OS . e e e 280
STOSB. .. e e e 280
STOSW L. e e e 280
STOSD. ... e e e e e 280
STOS . .ot t eeee 280
SUB . . e e 282
TEST . . e 285

vi Contents

AMDA

24594 Rev. 3.10 February 2005

Appendix A

4 System Instruction Reference

WRMSRoooit.

Opcode and Operand Encodings

A1l
A2

Opcode-Syntax Notation

Opcode Encodings..............

AMDG64 Technology

Contents

vii

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
One-Byte Opcodesot 377

Two-Byte Opcodes oottt e 380

rFLAGS Condition Codes for Two-Byte Opcodes 386

ModRM Extensions to One-Byte and Two-Byte Opcodes. . . 387

ModRM Extensions to Opcodes OF 01 and OF AE 390

BDNow!™ Opcodes .. .ovvini ittt 390

x87 Encodings 392

rFLAGS Condition Codes for x87 Opcodes.............. 402

A3 Operand Encodings............ ..o iiiiiiiinnnnnnnn. 402

ModRM Operand References. 402

SIB Operand References. uua.. 408

Appendix B General-Purpose Instructions in 64-Bit Mode 413
B.1 General Rules for 64-Bit Mode. 413

B.2 Operation and Operand Size in 64-Bit Mode 414

B.3 Invalid and Reassigned Instructions in 64-Bit Mode. 444

B.4 Instructions with 64-Bit Default Operand Size........... 446

B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode 448

B.6 NOPin64-BitMode..........coviiuiiiiiiiiiennnn. 448

B.7 Segment Override Prefixes in 64-Bit Mode 449

Appendix C Differences Between Long Mode and Legacy Mode 451
Appendix D Instruction Subsets and CPUID Feature Sets 453
D.1 InstructionSubsets 453

D.2 CPUIDFeature Setsuuttiiitrereeeeeeeeenns 455

D.3 Instruction Listtiiirnennnnnennn. 457

Appendix E Instruction Effects on RFLAGS 493
Index 499

Viii Contents

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

Figures

Figure 1-1. Instruction Byte-Order........., 1
Figure 1-2. Little-Endian Byte-Order of Instruction Stored in Memory .. .2

Figure 1-3. Encoding Examples of REX-Prefix R, X, and B Bits......... 18
Figure 1-4. ModRM-Byte Format.................ciiiiiieen.... 21
Figure 1-5. SIB-Byte Format.............. it iiiiinnnneennn. 22
Figure 2-1. Format of Instruction-Detail Pages 29
Figure 2-2. General Registers in Legacy and Compatibility Modes. 30
Figure 2-3. General Registersin 64-BitMode. 31
Figure 2-4. Segment Registersttt 32
Figure 2-5. General-Purpose DataTypes.ccviiieeen..... 33
Figure 2-6. System Registersi it iiiiinnnneennn. 34
Figure 2-7. System Data Structures.ccouiiiiieeeenennn... 35
Figure 2-8. 128-Bit Media Registers., 36
Figure 2-9. 128-Bit MediaData Typescouiiiiiiieeeenenn.. 37
Figure 2-10.64-Bit Media Registers., 38
Figure 2-11.64-Bit MediaData Typeso 39
Figure 2-12.X87 RegIStersS. . v v vttt ettt e ettt e e 40
Figure 2-13.x87 Data Types . . . oottt ittt ittt ettt e e e e e 41
Figure 2-14.Syntax for Typical Two-Operand Instruction 43

Figure 3-1. Standard Function 1 EAX : Processor Signature
(EAX REZISTET) . . v ittt ettt ettt e e eeeeeen 119

Figure 3-2. Standard Function 1 EBX: Initial APIC ID,
Number of Hyperthreads, CLFLUSH Size,

and 8-Bit Brand ID (EBX Register). 121
Figure 3-3. Extended Function 8000_0001h EBX: 12-bit Brand ID. 126
Figure 3-4. Extended Function 8000_0007h EDX: Advanced Power
Management Features (EDX Register) 133
Figure 3-5. Extended Function 8000_0008h EAX: Virtual and
Physical Address Widths 134
Figure 3-6. Extended Function 8000_0008h ECX: Physical Core Count . 134
Figure 3-7. MOVD Instruction Operationcccoeeeen... 197
Figure A-1. ModRM-Byte Fields 387
Figures ix

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Figure A-2. ModRM-Byte Format 403
Figure A-3. SIBByte Formatuutiiiireeeneennn. 409
Figure D-1. Instruction Subsets vs. CPUID Feature Sets.............. 454

X Figures

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Tables

Table 1-1. Legacy Instruction Prefixes 4
Table 1-2. Operand-Size Overrides.c .. 5
Table 1-3. Address-Size Overrides 7
Table 1-4. Pointer and Count Registers and the Address-Size Prefix8
Table 1-5. Segment-Override Prefixes........... 9
Table 1-6. REP PrefixOpcodes. 11
Table 1-7. REPE and REPZ PrefixOpcodes 12
Table 1-8. REPNE and REPNZ Prefix Opcodes 13
Table 1-9. REX Instruction Prefixes 14
Table 1-10. Instructions Not Requiring REX Size Prefix in 64-Bit Mode. . 15
Table 1-11. REX Prefix-Byte Fields 16
Table 1-12. Special REX Encodings for Registers 19
Table 1-13. Encoding for RIP-Relative Addressing 24
Table 2-1. Interrupt-Vector Sourceand Cause 42
Table 2-2. +rb, +rw, +rd, and +rq Register Value.................... 47
Table 3-1. Processor Vendor Return Values 118
Table 3-2. Effective Family Computation 120
Table 3-3. Effective Model Computation.cccvve.... 121
Table 3-4. CPUID Standard Feature Support

(Standard Function 1—ECX)o, 123
Table 3-5. CPUID Standard Feature Support

(Standard Function 1—EDX) 123
Table 3-6. CPUID AMD Feature Support

(Extended Function 8000_0001h—ECX)................. 126
Table 3-7. CPUID AMD Feature Support

(Extended Function 8000_0001h—EDX)................. 127
Table 3-8. Processor Name String Example 130
Table 3-9. CPUID TLB Bits for 2-Mbyte and 4-Mbyte Pages

(Extended Function 8000_0005—EAX).................. 131
Table 3-10. CPUID TLB Bits for 4-Kbyte Pages

(Extended Function 8000_0005—EBX) 131
Table 3-11. CPUID L1 Data Cache Bits

(Extended Function 8000_0005—ECX) 131
Table 3-12. CPUID L1 Instruction Cache Bits

(Extended Function 8000_0005—EDX).................. 131

Tables

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005

Table 3-13. CPUID L2 TLB Bits for 2-Mbyte and 4-Mbyte Pages

(Extended Function 8000_0006—EAX).................. 132
Table 3-14. CPUID L2 TLB Bits for 4-Kbyte Pages

(Extended Function 8000_0006—EBX) 132
Table 3-15. CPUID L2 Cache Bits

(Extended Function 8000_0006—ECX) 133
Table 3-16. Locality References for the Prefetch Instructions......... 233
Table A-1. One-Byte Opcodes, Low Nibble0-7h 378
Table A-2. One-Byte Opcodes, Low Nibble 8-Fh.................... 379
Table A-3. Second Byte of Two-Byte Opcodes, Low Nibble 0-7h....... 380
Table A-4. Second Byte of Two-Byte Opcodes, Low Nibble 8—-Fh 383
Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc 386
Table A-6. One-Byte and Two-Byte Opcode ModRM Extensions. 388
Table A-7. Opcode OF 01 and OF AE ModRM Extensions. 390
Table A-8. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0-7h .. 391
Table A-9. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8-Fh . . 392
Table A-10. x87 Opcodes and ModRM Extensions 394
Table A-11. rFLAGS Condition Codes for FCMOVcc 402
Table A-12. ModRM Register References, 16-Bit Addressing 403
Table A-13. ModRM Memory References, 16-Bit Addressing 404

Table A-14. ModRM Register References, 32-Bit and 64-Bit Addressing . 406
Table A-15. ModRM Memory References, 32-Bit and 64-Bit Addressing . 407

Table A-16. SIB base Field References 409
Table A-17. SIB Memory References 410
Table B-1. Operations and Operands in 64-Bit Mode 415
Table B-2. Invalid Instructionsin 64-BitMode 445
Table B-3. Reassigned Instructions in 64-Bit Mode. 446
Table B-4. Invalid Instructionsin LongMode 446
Table B-5. Instructions Defaulting to 64-Bit Operand Size 447
Table C-1. Differences Between Long Mode and Legacy Mode. 451
Table D-1. Instruction Subsets and CPUID Feature Sets............. 457
Table E-1. Instruction Effectson RFLAGS 493

Xii Tables

AMDA
24594—Rev. 3.10—February 2005 AMDG64 Technology

Revision History

Date Revision | Description

Clarified CPUID information in exception tables on instruction pages. Added

January 2005 310 information under “CPUID” on page 117. Made numerous small corrections.
Corrected table of valid descriptor types for LAR and LSL instructions and made
September 2003 3.09 several minor formatting, stylistic and factual corrections. Clarified several technical

defintions.

Corrected description of the operation of flags for RCL, RCR, ROL, and ROR
instructions. Clarified description of the MOVSXD and IMUL instructions. Corrected
operand specification for the STOS instruction. Corrected opcode of SETcc, Jcc,
April 2003 3.08 instructions. Added thermal control and thermal monitoring bits to CPUID
instruction. Corrected exception tables for POPF, SFENCE, SUB, XLAT, IRET, LSL,
MOV(CRn), SGDT/SIDT, SMSW, and STl instructions.. Corrected many small typos
and incorporated branding terminology.

Revision History Xiii

AMDA
AMDG64 Technology 24594—Rev. 3.10—February 2005

Xiv Revision History

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

Preface

About This Book

Audience

This book is part of a multivolume work entitled the AMD64
Architecture Programmer’s Manual. This table lists each volume
and its order number.

Title Order No.
Volume 1, Application Programming 24592
Volume 2, System Programming 24593
Volume 3, General-Purpose and System Instructions 24594
Volume 4, 128-Bit Media Instructions 26568
Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

This volume (Volume 3) is intended for all programmers writing
application or system software for a processor that implements
the AMDG64 architecture. Descriptions of general-purpose
instructions assume an understanding of the application-level
programming topics described in Volume 1. Descriptions of
system instructions assume an understanding of the system-
level programming topics described in Volume 2.

Contact Information

Organization

To submit questions or comments concerning this document,
contact our technical documentation staff at
AMDG64.Feedback@amd.com.

Volumes 3, 4, and 5 describe the AMDG64 architecture’s
instruction set in detail. Together, they cover each instruction’s
mnemonic syntax, opcodes, functions, affected flags, and
possible exceptions.

The AMDG64 instruction set is divided into five subsets:

Preface

Xv

AMDA

AMDG64 Technology

Definitions

Terms and Notation

24594 Rev. 3.10 February 2005

m General-purpose instructions
m System instructions

m 128-bit media instructions

m 64-bit media instructions

m x87 floating-point instructions

Several instructions belong to—and are described identically
in—multiple instruction subsets.

This volume describes the general-purpose and system
instructions. The index at the end cross-references topics within
this volume. For other topics relating to the AMD64
architecture, and for information on instructions in other
subsets, see the tables of contents and indexes of the other
volumes.

Many of the following definitions assume an in-depth
knowledge of the legacy x86 architecture. See “Related
Documents” on page xxvii for descriptions of the legacy x86
architecture.

In addition to the notation described below, “Opcode-Syntax
Notation” on page 375 describes notation relating specifically
to opcodes.

1011b

A binary value—in this example, a 4-bit value.
FOEAh

A hexadecimal value—in this example a 2-byte value.
[1,2)

A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

7-4
A bit range, from bit 7 to 4, inclusive. The high-order bit is

shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

xvi

Preface

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are
primarily a combination of MMX™ and 3DNow!™
instruction sets, with some additional instructions from the
SSE and SSE2 instruction sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute

Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

biased exponent

The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

Preface

Xvii

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

compatibility mode
A submode of long mode. In compatibility mode, the default

address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

commit

To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CRO-CR4

A register range, from register CRO through CR4, inclusive,
with the low-order register first.

CRO.PE =1

Notation indicating that the PE bit of the CRO register has a
value of 1.

direct

Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data

Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement

A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

XViii

Preface

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

DS:rSI

The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME =0

Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size

The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size

The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0

Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush

An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

Preface

Xix

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

T
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on
page xxvii for descriptions of the legacy x86 architecture.

legacy mode

An operating mode of the AMDG64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the AMDG64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMDG64 architecture. A
processor implementation of the AMDG64 architecture can
run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

Preface

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask

(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand
directly, without using a ModRM or SIB byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

Preface

XXi

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005

overflow
The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy
mode.

relative
Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

Xxii Preface

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

To preserve compatibility with future processors, reserved
fields require special handling when read or written by
software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ
or IGN (see definitions).

Software must not depend on the state of a reserved field,
nor upon the ability of such fields to return to a previously
written state.

If a reserved field is not marked with one of the above
qualifiers, software must not change the state of that field; it
must reload that field with the same values returned from a
prior read.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

set
To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base

(B).
SIMD

Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

SSE3

Further extensions to the SSE instruction set. See 128-bit
media instructions.

Preface

Xxiii

AMDA

AMDG64 Technology

Registers

24594 Rev. 3.10 February 2005

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CRS8).

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector

(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit
and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH-DH

The high 8-bit AH, BH, CH, and DH registers. Compare
AL-DL.

xxiv

Preface

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.
AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B-R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS

Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX-rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For

Preface

XXv

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

the 64-bit data size, these include RAX, RBX, RCX, RDX,

RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-rl15

The 8-bit R8B-R15B registers, or the 16-bit REW-R15W
registers, or the 32-bit R8D-R15D registers, or the 64-bit

R8-R15 registers.
rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit

size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

XXvi

Preface

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.
RFLAGS

Endian Order

64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS

Stack segment register.

TPR

Task priority register, a new register introduced in the
AMDG64 architecture to speed interrupt management.

TR
Task register.

The x86 and AMDG64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents

m Peter Abel, IBM PC Assembly Language and Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

m Rakesh Agarwal, 80x86 Architecture & Programming: Volume
II, Prentice-Hall, Englewood Cliffs, NJ, 1991.

Preface

XXxvii

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System
Architecture, Addison-Wesley, New York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly
Language Programming, Macmillan Publishing Co., New
York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix
Corporation, Richardson, TX, 1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

XXviii

Preface

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 80486DXZ2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, Blue Lightning 486DX2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium, Oxford
University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

NexGen Inc., Nx686 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

Preface

XXix

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft Press, Redmond, WA, 1993.

PharLap 386lASM Reference Manual, Pharlap, Cambridge
MA, 1993.

PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, 1386/i486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors
- news.microsoft

XXX

Preface

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

1 Instruction Formats

The format of an instruction encodes its operation, as well as
the locations of the instruction’s initial operands and the result
of the operation. This section describes the general format and
parameters used by all instructions. For information on the
specific format(s) for each instruction, see:

m Chapter 3, “General-Purpose Instruction Reference.”

m Chapter 4, “System Instruction Reference.”

m “128-Bit Media Instruction Reference” in Volume 4.

m “64-Bit Media Instruction Reference” in Volume 5.

m “x87 Floating-Point Instruction Reference” in Volume 5.

11 Instruction Byte Order

An instruction can be between one and 15 bytes in length.
Figure 1-1 shows the byte order of the instruction format.

Legacy REX Opcode Displacement Immediate
Prefix Prefix (1 or 2 bytes) ModRM SIB (1, 2, or 4 bytes) (1, 2, or 4 bytes)

B LI N L R

| Instruction Length < 15 Bytes |

»ld

Figure 1-1. Instruction Byte-Order

Instructions are stored in memory in little-endian order. The
least-significant byte of an instruction is stored at its lowest
memory address, as shown in Figure 1-2 on page 2.

Chapter 1: Instruction Formats 1

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

[Most-signifcant

I diat
(highest) address mmecae {1~

Immediate [*
Immediate [*
Immediate [*
Displacement | *
Displacement [*
Displacement | *
Displacement | *
SIB *
ModRM *
Opcode *
Opcode (all two-byte opcodes have OFh as their first byte)
REX Prefix | + (available only in 64-bit mode)
Legacy Prefix |+
Legacy Prefix |+
Legacy Prefix |+
Legacy Prefix |+

<15 Bytes

* optional, depending on the instruction
+ optional, with most instructions

Least-signifcant
| (lowest) address

513-304.eps

Figure 1-2. Little-Endian Byte-Order of Instruction Stored in Memory

The basic operation of an instruction is specified by an opcode.
The opcode is one or two bytes long, as described in “Opcode”
on page 20. An opcode can be preceded by any number of legacy
prefixes. These prefixes can be classified as belonging to any of
the five groups of prefixes described in “Instruction Prefixes”
on page 3. The legacy prefixes modify an instruction’s default
address size, operand size, or segment, or they invoke a special
function such as modification of the opcode, atomic bus-
locking, or repetition. The REX prefix can be used in 64-bit
mode to access the register extensions illustrated in
“Application-Programming Register Set” in Volume 1. If a REX
prefix is used, it must immediately precede the first opcode
byte.

An instruction’s opcode consists of one or two bytes. In several
128-bit and 64-bit media instructions, a legacy operand-size or
repeat prefix byte is used in a special-purpose way to modify
the opcode. The opcode can be followed by a mode-register-
memory (ModRM) byte, which further describes the operation

Chapter 1: Instruction Formats

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

and/or operands. The opcode, or the opcode and ModRM byte,
can also be followed by a scale-index-base (SIB) byte, which
describes the scale, index, and base forms of memory
addressing. The ModRM and SIB bytes are described in
“ModRM and SIB Bytes” on page 20, but their legacy functions
can be modified by the REX prefix (“Instruction Prefixes” on

page 3).

The 15-byte instruction-length limit can only be exceeded by
using redundant prefixes. If the limit is exceeded, a general-
protection exception occurs.

1.2 Instruction Prefixes

12.1 Summary of
Legacy Prefixes

The instruction prefixes shown in Figure 1-1 on page 1 are of
two types: legacy prefixes and REX prefixes. Each of the legacy
prefixes has a unique byte value. By contrast, the REX prefixes,
which enable use of the AMDG64 register extensions in 64-bit
mode, are organized as a group of byte values in which the value
of the prefix indicates the combination of register-extension
features to be enabled.

Table 1-1 on page 4 shows the legacy prefixes—that is, all
prefixes except the REX prefixes, which are described on
page 14. The legacy prefixes are organized into five groups, as
shown in the left-most column of Table 1-1. A single instruction
should include a maximum of one prefix from each of the five
groups. The legacy prefixes can appear in any order within the
position shown in Figure 1-1 for legacy prefixes. The result of
using multiple prefixes from a single group is unpredictable.

Some of the restrictions on legacy prefixes are:

m Operand-Size Override—This prefix affects only general-
purpose instructions and a few x87 instructions. When used
with 128-bit and 64-bit media instructions, this prefix acts in
a special way to modify the opcode.

m Address-Size QOverride—This prefix affects only memory
operands.

m Segment Ouverride—In 64-bit mode, the CS, DS, ES, and SS
segment override prefixes are ignored.

m LOCK Prefix—This prefix is allowed only with certain
instructions that modify memory.

Chapter 1: Instruction Formats 3

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

m Repeat Prefixes—These prefixes affect only certain string
instructions. When used with 128-bit and 64-bit media
instructions, these prefixes act in a special way to modify the
opcode.

Table 1-1. Legacy Instruction Prefixes

Prefix Byte

o L A W

Prefix Group' Mnemonic (Hex) Description
, . Changes the default operand size of a memory or register
i 2
Operand-Size Override | none 66 operand, as shown in Table 1-2 on page 5.
Address-Size Override none 673 Change_s the default address size of a memory operand, as
shown in Table 1-3 on page 7.
cs 2F* Forces use of the current CS segment for memory operands.
DS 3 Forces use of the current DS segment for memory operands.
. ES 264 Forces use of the current ES segment for memory operands.
Segment Override
FS 64 Forces use of the current FS segment for memory operands.
GS 65 Forces use of the current GS segment for memory operands.
SS 364 Forces use of the current SS segment for memory operands.
Causes certain kinds of memory read-modify-write
5
Lock Lock Fo instructions to occur atomically.
REP Repeats a string operation (INS, MOVS, OUTS, LODS, and
STOS) until the rCX register equals 0.
REPE or F3 Repeats a compare-string or scan-string operation
Repeat REPZ (CMPSx and SCASX) until the rCX register equals 0 or the
P zero flag (ZF) is cleared to 0.
REPNE or Repeats a compare-string or scan-string operation
REPNZ F26 (CMPSx and SCASx) until the rCX register equals 0 or the
zero flag (ZF) is set to 1.
Note:

1. Asingle instruction should include a maximum of one prefix from each of the five groups.

2. When used with 128-bit and 64-bit media instructions, this prefix acts in a special way to modify the opcode. The prefix is ignored
by 64-bit media floating-point (3DNow!™) instructions. See “Instructions that Cannot Use the Operand-Size Prefix” on page 6.

This prefix also changes the size of the RCX register when used as an implied count register.
In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.
The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 10.

This prefix should be used only with compare-string and scan-string instructions. When used with 128-bit and 64-bit media instruc-
tions, the prefix acts in a special way to modify the opcode.

Chapter 1: Instruction Formats

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
12.2 Operand-Size The default operand size for an instruction is determined by a
Override Prefix combination of its opcode, the D (default) bit in the current

code-segment descriptor, and the current operating mode, as
shown in Table 1-2. The operand-size override prefix (66h)
selects the non-default operand size. The prefix can be used
with any general-purpose instruction that accesses non-fixed-
size operands in memory or general-purpose registers (GPRs),
and it can also be used with the x87 FLDENYV, FNSTENYV,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-
bit data on an instruction-by-instruction basis. In compatibility
and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

Table 1-2. Operand-Size Overrides

Default Eﬂectiv: Instruction Prefix'
Operating Mode Operand Ope.ran
Size (Bits) | ' 66h | REXWS
(Bits) .
64 don't care yes
64-Bit 2
2 32 no no
Mode 3
16 yes no
Long 32 no
Mode 32
Compatibility 16 yes
Mode 32 yes
16
16 no Not
) no Applicable
32
Legacy Mode 16 yes
(Protected, Virtual-8086,
or Real Mode) 6 32 Yes
16 no
Note:
1. A “no’indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand sizes. See
Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefixes” on page 14.

Chapter 1: Instruction Formats 5

AMDA

AMDG64 Technology

1.2.3 Address-Size
Override Prefix

24594 Rev. 3.10 February 2005

In 64-bit mode, most instructions default to a 32-bit operand
size. For these instructions, a REX prefix (page 16) can specify
a 64-bit operand size, and a 66h prefix specifies a 16-bit operand
size. The REX prefix takes precedence over the 66h prefix.
However, if an instruction defaults to a 64-bit operand size, it
does not need a REX prefix and it can only be overridden to a
16-bit operand size. It cannot be overridden to a 32-bit operand
size, because there is no 32-bit operand-size override prefix in
64-bit mode. Two groups of instructions have a default 64-bit
operand size in 64-bit mode:

m Near branches. For details, see “Near Branches in 64-Bit
Mode” in Volume 1.

m All instructions, except far branches, that implicitly
reference the RSP. For details, see “Stack Operation” in
Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size
prefix should be used only with general-purpose instructions
and the x87 FLDENYV, FNSTENYV, FNSAVE, and FRSTOR
instructions, in which the prefix selects between 16-bit and 32-
bit operand size. The prefix is ignored by all other x87
instructions and by 64-bit media floating-point (3DNow!™)
instructions.

When used with 64-bit media integer instructions, the 66h prefix
acts in a special way to modify the opcode. This modification
typically causes an access to an XMM register or 128-bit
memory operand and thereby converts the 64-bit media
instruction into its comparable 128-bit media instruction. The
result of using an F2h or F3h repeat prefix along with a 66h
prefix in 128-bit or 64-bit media instructions is unpredictable.

Operand-Size and REX Prefixes. The REX operand-size prefix takes
precedence over the 66h prefix. See “REX.W: Operand Width”
on page 16 for details.

The default address size for instructions that access non-stack
memory is determined by the current operating mode, as shown
in Table 1-3. The address-size override prefix (67h) selects the
non-default address size. Depending on the operating mode,
this prefix allows mixing of 16-bit and 32-bit, or of 32-bit and 64-
bit addresses, on an instruction-by-instruction basis. The prefix
changes the address size for memory operands. It also changes

Chapter 1: Instruction Formats

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS),
the address size for stack accesses is determined by the D
(default) bit in the stack-segment descriptor. In 64-bit mode,
the D bit is ignored, and all stack references have a 64-bit
address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is
determined as shown in Table 1-3.

Table 1-3. Address-Size Overrides

Address-
Default Effective . -
] . - Size Prefix
Operating Mode AddressSize | Address Size 1
(Bits) (Bits) (67h)
Required?
64-Bit 6 64 no
Mode 32 yes
32 no
Long Mode 32 ,
Compatibility 6 yes
Mode 32 yes
16
16 no
32 no
32
Legacy Mode 16 yes
(Protected, Virtual-8086, or Real
MOdE) 32 yes
16
16 no
Note:
1. A“no” indicates that the default address size is used.

As Table 1-3 shows, the default address size is 64 bits in 64-bit
mode. The size can be overridden to 32 bits, but 16-bit
addresses are not supported in 64-bit mode. In compatibility
and legacy modes, the default address size is 16 bits or 32 bits,
depending on the operating mode (see “Processor Initialization
and Long-Mode Activation” in Volume 2 for details). In these
modes, the address-size prefix selects the non-default size, but
the 64-bit address size is not available.

Chapter 1: Instruction Formats 7

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Certain instructions reference pointer registers or count
registers implicitly, rather than explicitly. In such instructions,
the address-size prefix affects the size of such addressing and
count registers, just as it does when such registers are explicitly
referenced. Table 1-4 lists all such instructions and the registers
referenced using the three possible address sizes.

Table 1-4. Pointer and Count Registers and the Address-Size Prefix
Pointer or Count Register
Instruction 16-Bit 32-Bit 64-Bit

Address Size | Address Size | Address Size

CMPS, CMPSB, CMPSW,

CMPSD, CMPSQ—-Compare SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

Strings

IN§, INSB, INSW, INSD—Input DI, CX EDI, ECX RDI, RCX

String

JCXZ, JECXZ, JRCXZ—Jump on

CX/ECX/RCX Zero X ECX RCX

LODS, LODSB, LODSW,

LODSD, LODSQ-Load String ol X ESl, EX RI, RCX

LOOP, LOOPE, LOOPNZ,

LOOPNE, LOOPZ—Loop CX ECX RCX

MOVS, MOVSB, MOVSW,

MOVSD, MOVSQ—Move String SI, DI, X ESI, EDI, ECX RSI, RDI, RCX

OUTS, OUTSB, OUTSW,

OUTSD—Output String SI, CX ESI, ECX RSI, RCX

REP, REPE, REPNE, REPNZ,

REPZ—Repeat Prefixes X ECX RCX

SCAS, SCASB, SCASW, SCASD,

SCASQ—Scan String DI, CX EDI, ECX RDI, RCX

STOS, STOSB, STOSW, STOSD,

STOSQStore String DI, CX EDI, ECX RDI, RCX

XLAT, X_LATB—TabIe Look-up BX EBX RBX

Translation

8 Chapter 1: Instruction Formats

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
124 Segment- Segment overrides can be used only with instructions that
Override Prefixes reference non-stack memory. Most instructions that reference

memory are encoded with a ModRM byte (page 20). The default
segment for such memory-referencing instructions is implied by
the base register indicated in its ModRM byte, as follows:

Instructions that Reference a Non-Stack Segment—If an
instruction encoding references any base register other than
rBP or rSP, or if an instruction contains an immediate offset,
the default segment is the data segment (DS). These
instructions can use the segment-override prefix to select
one of the non-default segments, as shown in Table 1-5.

String Instructions—String instructions reference two
memory operands. By default, they reference both the DS
and ES segments (DS:rSI and ES:rDI). These instructions
can override their DS-segment reference, as shown in
Table 1-5, but they cannot override their ES-segment
reference.

Instructions that Reference the Stack Segment—If an
instruction’s encoding references the rBP or rSP base
register, the default segment is the stack segment (SS). All
instructions that reference the stack (push, pop, call,
interrupt, return from interrupt) use SS by default. These
instructions cannot use the segment-override prefix.

Table 1-5. Segment-Override Prefixes

Mnemonic Pre(f:l)ég)y te Description

cs! 2E Forces use of current CS segment for memory operands.
DS! 3E Forces use of current DS segment for memory operands.
ES! 26 Forces use of current ES segment for memory operands.
FS 64 Forces use of current FS segment for memory operands.
GS 65 Forces use of current GS segment for memory operands.
Ss! 36 Forces use of current SS segment for memory operands.
Note:

1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

Chapter 1: Instruction Formats

AMDA

AMDG64 Technology

1.2.5 Lock Prefix

1.2.6 Repeat Prefixes

24594 Rev. 3.10 February 2005

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES,
and SS segment-override prefixes have no effect. These four
prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as
null prefixes.

The FS and GS segment-override prefixes are treated as true
segment-override prefixes in 64-bit mode. Use of the FS or GS
prefix causes their respective segment bases to be added to the
effective address calculation. See “FS and GS Registers in 64-
Bit Mode” in Volume 2 for details.

The LOCK prefix causes certain kinds of memory read-modify-
write instructions to occur atomically. The mechanism for doing
so is implementation-dependent (for example, the mechanism
may involve bus signaling or packet messaging between the
processor and a memory controller). The prefix is intended to
give the processor exclusive use of shared memory in a
multiprocessor system.

The LOCK prefix can only be used with forms of the following
instructions that write a memory operand: ADC, ADD, AND,
BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, DEC, INC, NEG,
NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-
opcode exception occurs if the LOCK prefix is used with any
other instruction.

The repeat prefixes cause repetition of certain instructions that
load, store, move, input, or output strings. The prefixes should
only be used with such string instructions. Two pairs of repeat
prefixes, REPE/REPZ and REPNE/REPNZ, perform the same
repeat functions for certain compare-string and scan-string
instructions. The repeat function uses rCX as a count register.
The size of rCX is based on address size, as shown in Table 1-4
on page 8.

REP. The REP prefix repeats its associated string instruction the
number of times specified in the counter register (rCX). It
terminates the repetition when the value in rCX reaches 0. The
prefix can only be used with the INS, LODS, MOVS, OUTS, and
STOS instructions. Table 1-6 shows the valid REP prefix
opcodes.

10

Chapter 1: Instruction Formats

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Table 1-6. REP Prefix Opcodes

Mnemonic Opcode

REP INS reg/mem8, DX
REP INSB

REP INS reg/mem16/32, DX
REP INSW F3 6D
REP INSD

REP LODS mem8
REP LODSB

REP LODS mem16/32/64
REP LODSW
REP LODSD
REP LODSQ

REP MOVS mem8, mem8
REP MOVSB

REP MOVS mem16/32/64, mem16/32/64
REP MOVSW
REP MOVSD
REP MOVSQ

REP OUTS DX, reg/mem8
REP OUTSB

REP OUTS DX, reg/mem16/32
REP OUTSW F3 6F
REP OUTSD

REP STOS mem8
REP STOSB

REP STOS mem 16/32/64
REP STOSW
REP STOSD
REP STOSQ

F3 6C

F3 AC

F3 AD

F3 A4

F3 A5

F3 6E

F3 AA

F3 AB

REPE and REPZ. REPE and REPZ are synonyms and have
identical opcodes. These prefixes repeat their associated string
instruction the number of times specified in the counter

Chapter 1: Instruction Formats 11

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
register (rCX). The repetition terminates when the value in rCX
reaches 0 or when the zero flag (ZF) is cleared to 0. The REPE
and REPZ prefixes can only be used with the CMPS, CMPSB,
CMPSD, CMPSW, SCAS, SCASB, SCASD, and SCASW
instructions. Table 1-7 shows the valid REPE and REPZ prefix
opcodes.

Table 1-7. REPE and REPZ Prefix Opcodes
Mnemonic Opcode
REPx CMPS mem8, mem8 F3 A6
REPx CMPSB
REPx CMPS mem16/32/64, mem16/32/64
REPx CMPSW
F3 A7
REPx CMPSD
REPx CMPSQ
REPx SCAS mem8 F3 AE
REPx SCASB
REPx SCAS mem16/32/64
REPx SCASW
F3 AF
REPx SCASD
REPx SCASQ
REPNE and REPNZ. REPNE and REPNZ are synonyms and have
identical opcodes. These prefixes repeat their associated string
instruction the number of times specified in the counter
register (rCX). The repetition terminates when the value in rCX
reaches 0 or when the zero flag (ZF) is set to 1. The REPNE and
REPNZ prefixes can only be used with the CMPS, CMPSB,
CMPSD, CMPSW, SCAS, SCASB, SCASD, and SCASW
instructions. Table 1-8 on page 13 shows the valid REPNE and
REPNZ prefix opcodes.
12 Chapter 1: Instruction Formats

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Table 1-8. REPNE and REPNZ Prefix Opcodes

Mnemonic Opcode

REPNx CMPS mem8, mem8

REPNx CMPSB F2A8

REPNx CMPS mem16/32/64, mem16/32/64
REPNx CMPSW
REPNx CMPSD
REPNx CMPSQ

REPNx SCAS mem8
REPNx SCASB

REPNx SCAS mem16/32/64
REPNx SCASW
REPNx SCASD
REPNx SCASQ

F2 A7

F2 AE

F2 AF

Instructions that Cannot Use Repeat Prefixes. In general, the repeat
prefixes should only be used in the string instructions listed in
tables 1-6, 1-7, and 1-8, and in 128-bit or 64-bit media
instructions. When used in media instructions, the F2h and F3h
prefixes act in a special way to modify the opcode rather than
cause a repeat operation. The result of using a 66h operand-size
prefix along with an F2h or F3h prefix in 128-bit or 64-bit media
instructions is unpredictable.

Optimization of Repeats. Depending on the hardware implementa-
tion, the repeat prefixes can have a setup overhead. If the
repeated count is variable, the overhead can sometimes be
avoided by substituting a simple loop to move or store the data.
Repeated string instructions can be expanded into equivalent
sequences of inline loads and stores or a sequence of stores can
be used to emulate a REP STOS.

For repeated string moves, performance can be maximized by
moving the largest possible operand size. For example, use REP
MOVSD rather than REP MOVSW and REP MOVSW rather
than REP MOVSB. Use REP STOSD rather than REP STOSW
and REP STOSW rather than REP MOVSB.

Chapter 1: Instruction Formats 13

AMDA

AMDG64 Technology

1.2.7 REX Prefixes

24594 Rev. 3.10 February 2005

Depending on the hardware implementation, string moves with
the direction flag (DF) cleared to 0 (up) may be faster than
string moves with DF set to 1 (down). DF =1 is only needed for
certain cases of overlapping REP MOVS, such as when the
source and the destination overlap.

REX prefixes are a group of instruction-prefix bytes that can be
used only in 64-bit mode. They enable access to the AMDG64
register extensions. Figure 1-1 on page 1 and Figure 1-2 on
page 2 show how a REX prefix fits within the byte order of
instructions. REX prefixes enable the following features in 64-
bit mode:

m Use of the extended GPR (Figure 2-3 on page 31) or XMM
registers (Figure 2-8 on page 36).
m Use of the 64-bit operand size when accessing GPRs.

m Use of the extended control and debug registers, as
described in “64-Bit-Mode Extended Control Registers” in
Volume 2 and “64-Bit-Mode Extended Debug Registers” in
Volume 2.

m Use of the uniform byte registers (AL-R15).

Table 1-9 shows the REX prefixes. The value of a REX prefix is
in the range 40h through 4Fh, depending on the particular
combination of AMDG64 register extensions desired.

Table 1-9. REX Instruction Prefixes

. . Prefix Code .
Prefix Type Mnemonic (Hex) Description
REX.W
40!
. . REXR Access an AMD64 register
Register Extensions through .
REX.X extension.
4F!
REX.B

Note:

1. See Table 1-11 for encoding of REX prefixes.

A REX prefix is normally required with an instruction that
accesses a 64-bit GPR or one of the extended GPR or XMM
registers. Only a few instructions have an operand size that
defaults to (or is fixed at) 64 bits in 64-bit mode, and thus do not

14

Chapter 1: Instruction Formats

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

need a REX prefix. These exceptions to the normal rule are
listed in Table 1-10.

An instruction can have only one REX prefix, although the
prefix can express several extension features. If a REX prefix is
used, it must immediately precede the first opcode byte in the
instruction format. Any other placement of a REX prefix, or any
use of a REX prefix in an instruction that does not access an
extended register, is ignored. The legacy instruction-size limit
of 15 bytes still applies to instructions that contain a REX
prefix.

Table 1-10. Instructions Not Requiring REX Size Prefix in 64-Bit Mode

CALL (Near) POP reg/mem

ENTER POP reg

Jec POP FS

IircxXz POP GS

JMP (Near) POPFQ

LEAVE PUSH imm8

LGDT PUSH imm32

LIDT PUSH reg/mem

LLDT PUSH reg

LOOP PUSH FS

LOOPcc PUSH GS

LTR PUSHFQ

MOV CR(n) RET (Near)
MOV DR(n)

Chapter 1: Instruction Formats 15

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

REX prefixes are a set of sixteen values that span one row of
the main opcode map and occupy entries 40h through 4Fh.
Table 1-11 and Figure 1-3 on page 18 show the prefix fields and
their uses.

Table 1-11. REX Prefix-Byte Fields

Mnemonic Bit Position Definition

- 7-4 0100

0 = Default operand size

REXW 3 1 = 64-bit operand size

REXR 2 1-bit (high) extension of the ModRM reg field',
' thus permitting access to 16 registers.

REXX 1 1-bit (high) extension of the SIB index field',
' thus permitting access to 16 registers.

1-bit (high) extension of the ModRM r/m field',

REX.B 0 SIB base field', or opcode reg field, thus
permitting access to 16 registers.

Note:
1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 20.

REX.W: Operand Width. Setting the REX.W bit to 1 specifies a 64-
bit operand size. Like the existing 66h operand-size prefix, the
REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size
override takes precedence over the 66h prefix. If a 66h prefix is
used together with a REX prefix that has the REX.W bit set to
1, the 66h prefix is ignored. However, if a 66h prefix is used
together with a REX prefix that has the REX.W bit cleared to 0,
the 66h prefix is not ignored and the operand size becomes
16 bits.

REX.R: Register. The REX.R bit adds a 1-bit (high) extension to
the ModRM reg field (page 20) when that field encodes a GPR,
XMM, control, or debug register. REX.R does not modify
ModRM reg when that field specifies other registers or opcodes.
REX.R isignored in such cases.

REX.X: Index. The REX.X bit adds a 1-bit (high) extension to the
SIB index field (page 20).

16

Chapter 1: Instruction Formats

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

REX.B: Base. The REX.B bit either adds a 1-bit (high) extension
to the base in the ModRM r/m field or SIB base field, or it adds a
1-bit (high) extension to the opcode reg field used for accessing
GPRs. (See Table 2-2 on page 47 for more about the REX.B bit.)

Encoding Examples. Figure 1-3 on page 18 shows four examples of
how the R, X, and B bits of REX prefixes are concatenated with
fields from the ModRM byte, SIB byte, and opcode to specify
register and memory addressing. The R, X, and B bits are
described in Table 1-11 on page 16.

Byte-Register Addressing. In the legacy architecture, the byte
registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2-2 on page 30) are encoded in the ModRM reg or r/m
field or in the opcode reg field as registers 0 through 7. The REX
prefix provides an additional byte-register addressing
capability that makes the least-significant byte of any GPR
available for byte operations (Figure 2-3 on page 31). This
provides a uniform set of byte, word, doubleword, and
quadword registers better suited for register allocation by
compilers.

Special Encodings for Registers. Readers who need to know the
details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special
meaning for register encodings. For some of these
combinations, the instruction fields expanded by the REX
prefix are not decoded (treated as don’t cares), thereby creating
aliases of these encodings in the extended registers. Table 1-12
on page 19 describes how each of these cases behaves.

Implications for INC and DEC Instructions. The REX prefix values are
taken from the 16 single-byte INC and DEC instructions, one for
each of the eight GPRs. Therefore, these single-byte opcodes for
INC and DEC are not available in 64-bit mode, although they
are available in legacy and compatibility modes. The
functionality of these INC and DEC instructions is still
available in 64-bit mode, however, using the ModRM forms of
those instructions (opcodes FF /0 and FF /1).

Chapter 1: Instruction Formats 17

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Case 1: Register-Register Addressing (No Memory Operand)

ModRM Byte
REX Prefix Opcode mod reg r/m
4WRx8 | | | [11]rrr|bbb] REXXisnotused
|
4
4
Rrrr Bbbb

Case 2: Memory Addressing Without an SIB Byte

ModRM Byte
REX Prefix Opcode mod reg r/m
4WRXB ' rrrobb] REXXis notused
| I | I | | | I ModRM reg field = 100
4
4
Rrrr Bbbb

Case 3: Memory Addressing With an SIB Byte

ModRM Byte SIB Byte
REX Prefix Opcode mod reg r/m scale index base
4WRXB | | [!11] rrre|100] [bb|xxx]|bbb |
|
4 14
4
Rrrr Xxxx Bbbb

Case 4: Register Operand Coded in Opcode Byte

Opcode Byte
REX Prefix op reg
4WRXB | [bbb | REXRis not used
| REXXis not used
4
Bbbb 513-302.6ps

Figure 1-3. Encoding Examples of REX-Prefix R, X, and B Bits

18 Chapter 1: Instruction Formats

AMDA

ModRM Byte:
* mod =00

« r/m' =x101 (EBP)

Base register is not used.

displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

24594 Rev. 3.10 February 2005 AMDG64 Technology
Table 1-12. Special REX Encodings for Registers
ModRM and SIB Meaning in Legacy and Implications in Legacy Additional REX
Encodings? Compatibility Modes and Compatibility Modes Implications
REX prefix adds a fourth bit
_ (b), which is decoded and
ModRM Byte: SIB byte is required for modifies the base register
* mod # 11 SIB byte is present. y quiired in the SIB byte. Therefore,
ESP-based addressing. .
. 1_ the SIB byte is also
r/m' =100 (ESP) .
required for R12-based
addressing.
Using EBP without a REX prefix adds a fourth bit

(x), which is not decoded
(don't care). Therefore,
using RBP or R13 without a
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:
« index' =x100 (ESP)

Index register is not used.

ESP cannot be used as an
index register.

REX prefix adds a fourth bit
(x), which is decoded.
Therefore, there are no
additional implications.
The expanded index field is
used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:
* base=b101 (EBP)
* ModRM.mod = 00

Base register is not used if
ModRM.mod = 00.

Base register depends on
mod encoding. Using EBP
with a scaled index and
without a displacement
must be done by setting
mod =01 with a
displacement of 0.

REX prefix adds a fourth bit
(b), which is not decoded
(don't care). Therefore,
using RBP or R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

Notes:

1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB index, and SIB
base fields. The lower-case “x” for ModRM r/m (rather than the upper-case “B” shown in Figure 1-3 on page 18) indicates that
the REX-prefix bit is not decoded (don’t care).

2. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 20.

Chapter 1: Instruction Formats

19

AMDA

AMDG64 Technology

1.3

1.4

Opcode

24594 Rev. 3.10 February 2005

Each instruction has a unique opcode, although assemblers can
support multiple mnemonics for a single instruction opcode.
The opcode specifies the operation that the instruction
performs and, in certain cases, the kinds of operands it uses. An
opcode consists of one or two bytes, but certain 128-bit media
instructions also use a prefix byte in a special way to modify the
opcode. The 3-bit reg field of the ModRM byte (“ModRM and
SIB Bytes” on page 20) is also used in certain instructions
either for three additional opcode bits or for a register
specification.

128-Bit and 64-Bit Media Instruction Opcodes. Many 128-bit and 64-bit
media instructions include a 66h, F2h, or F3h prefix byte in a
special way to modify the opcode. These same byte values can
be used in certain general-purpose and x87 instructions to
modify operand size (66h) or repeat the operation (F2h, F3h). In
128-bit and 64-bit media instructions, however, such prefix
bytes modify the opcode. If a 128-bit or 64-bit media instruction
uses one of these three prefixes, and also includes any other
prefix in the 66h, F2h, and F3h group, the result is
unpredictable.

All opcodes for 64-bit media instructions begin with a OFh byte.
In the case of 64-bit floating-point (3DNow!) instructions, the
OFh byte is followed by a second OFh opcode byte. A third
opcode byte occupies the same position at the end of a 3DNow!
instruction as would an immediate byte. The value of the
immediate byte is shown as the third opcode byte-value in the
syntax for each instruction in “64-Bit Media Instruction
Reference” in Volume 5. The format is:

OFh OFh ModRM [SIB] [displacement] 3DNow!_third _opcode_byte

For details on opcode encoding, see Appendix A, “Opcode and
Operand Encodings.”

ModRM and SIB Bytes

The ModRM byte is used in certain instruction encodings to:

m Define a register reference.

m Define a memory reference.

20

Chapter 1: Instruction Formats

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

m Provide additional opcode bits with which to define the
instruction’s function.

ModRM bytes have three fields—mod, reg, and r/m. The reg field
provides additional opcode bits with which to define the
function of the instruction or one of its operands. The mod and
r/m fields are used together with each other and, in 64-bit
mode, with the REX.R and REX.B bits of the REX prefix
(page 14), to specify the location of an instruction’s operands
and certain of the possible addressing modes (specifically, the
non-complex modes).

Figure 1-4 shows the format of a ModRM byte.

Bits: 7 6 5 4 3 2 1 0
[mod | reg [ym] Modrm

REX.R bit of REX prefix can —T
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

513-305.eps

Figure 1-4. ModRM-Byte Format

In some instructions, the ModRM byte is followed by an SIB
byte, which defines memory addressing for the complex-
addressing modes described in “Effective Addresses” in
Volume 1. The SIB byte has three fields—scale, index, and
base—that define the scale factor, index-register number, and
base-register number for 32-bit and 64-bit complex addressing
modes. In 64-bit mode, the REX.B and REX.X bits extend the
encoding of the SIB byte’s base and index fields.

Figure 1-5 shows the format of an SIB byte.

Chapter 1: Instruction Formats 21

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

Bts: 7 6 5 4 3 2 1 0
[scale | index | base | siB

REX.X bit of REX prefix can —T
extend this field to 4 bits

513-306.eps

REX.B bit of REX prefix can
extend this field to 4 bits

Figure 1-5. SIB-Byte Format

The encodings of ModRM and SIB bytes not only define
memory-addressing modes, but they also specify operand
registers. The encodings do this by using 3-bit fields in the
ModRM and SIB bytes, depending on the format:

m ModRM: the reg and r/m fields of the ModRM byte. (Case 1 in
Figure 1-3 on page 18 shows an example of this).

s ModRM with SIB: the reg field of the ModRM byte and the
base and index fields of the SIB byte. (Case 3 in Figure 1-3 on
page 18 shows an example of this).

m Instructions without ModRM: the reg field of the opcode.
(Case 4 in Figure 1-3 on page 18 shows an example of this).

In 64-bit mode, the bits needed to extend each field for
accessing the additional registers are provided by the REX
prefixes, as shown in Figure 1-4 and Figure 1-5.

For details on opcode encoding, see Appendix A, “Opcode and
Operand Encodings.”

Displacement Bytes

A displacement (also called an offset) is a signed value that is
added to the base of a code segment (absolute addressing) or to
an instruction pointer (relative addressing), depending on the
addressing mode. The size of a displacement is 1, 2, or 4 bytes. If
an addressing mode requires a displacement, the bytes (1, 2, or
4) for the displacement follow the opcode, ModRM, or SIB byte
(whichever comes last) in the instruction encoding.

22

Chapter 1: Instruction Formats

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

In 64-bit mode, the same ModRM and SIB encodings are used to
specify displacement sizes as those used in legacy and
compatibility modes. However, the displacement is sign-
extended to 64 bits during effective-address calculations. Also,
in 64-bit mode, support is provided for some 64-bit
displacement and immediate forms of the MOV instruction. See
“Immediate Operand Size” in Volume 1 for more information
on this.

1.6 Immediate Bytes

An immediate is a value—typically an operand value—encoded
directly into the instruction. Depending on the opcode and the
operating mode, the size of an immediate operand can be 1, 2,
or 4 bytes. Immediate operands in 64-bit mode are limited to
these same sizes. In 64-bit mode, support is provided for some
64-bit displacement and immediate forms of the MOV
instruction. See “Immediate Operand Size” in Volume 1 for
more information on this.

If an instruction takes an immediate operand, the bytes (1, 2, or
4) for the immediate follow the opcode, ModRM, SIB, or
displacement bytes (whichever come last) in the instruction
encoding. Some 128-bit media instructions use the immediate
byte as a condition code.

1.7 RIP-Relative Addressing

In 64-bit mode, addressing relative to the contents of the 64-bit
instruction pointer (program counter)—called RIP-relative
addressing or PC-relative addressing—is implemented for
certain instructions. In such cases, the effective address is
formed by adding the displacement to the 64-bit RIP of the next
instruction.

In the legacy x86 architecture, addressing relative to the
instruction pointer is available only in control-transfer
instructions. In the 64-bit mode, any instruction that uses
ModRM addressing can use RIP-relative addressing. This
feature is particularly useful for addressing data in position-
independent code and for code that addresses global data.

Without RIP-relative addressing, ModRM instructions address
memory relative to zero. With RIP-relative addressing, ModRM

Chapter 1: Instruction Formats 23

AMDA

AMDG64 Technology

1.71 Encoding

24594 Rev. 3.10 February 2005

instructions can address memory relative to the 64-bit RIP
using a signed 32-bit displacement. This provides an offset
range of +2 Gbytes from the RIP.

Programs usually have many references to data, especially
global data, that are not register-based. To load such a program,
the loader typically selects a location for the program in
memory and then adjusts program references to global data
based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

Table 1-13 shows the ModRM and SIB encodings for RIP-
relative addressing. Redundant forms of 32-bit displacement-
only addressing exist in the current ModRM and SIB encodings.
There is one ModRM encoding with several SIB encodings. RIP-
relative addressing is encoded using one of the redundant
forms. In 64-bit mode, the ModRM Disp32 (32-bit displacement)
encoding is redefined to be RIP + Disp32 rather than
displacement-only.

Table 1-13. Encoding for RIP-Relative Addressing

ModRM and SIB

Meaning in Legacy and Additional 64-bit

Meaning in 64-bit Mode

* index =100 (none)
* scale=1,2, 4,8

Encodings Compatibility Modes Implications
ModRM Byte: ﬁ_efol'based ({'03313') _
. . isplacement addressin
* mod =00 Disp32 RIP + Disp32 muzt use SIB form (seeg
* r/m=101 (none) next row).
SIB Byte:
 base =101 (none) .
If mod = 00, Disp32 Same as Legacy None

1.72 REX Prefix and
RIP-Relative
Addressing

ModRM encoding for RIP-relative addressing does not depend
on a REX prefix. In particular, the r/m encoding of 101, used to
select RIP-relative addressing, is not affected by the REX
prefix. For example, selecting R13 (REX.B =1, r/m = 101) with
mod = 00 still results in RIP-relative addressing.

The four-bit /m field of ModRM is not fully decoded. Therefore,
in order to address R13 with no displacement, software must
encode it as R13 + 0 using a one-byte displacement of zero.

24

Chapter 1: Instruction Formats

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
1.73 Address-Size RIP-relative addressing is enabled by 64-bit mode, not by a 64-
Prefix and RIP- bit address-size. Conversely, use of the address-size prefix
Relative Addressing (“Address-Size Override Prefix” on page 6) does not disable

RIP-relative addressing. The effect of the address-size prefix is
to truncate and zero-extend the computed effective address to
32 bits, like any other addressing mode.

Chapter 1: Instruction Formats 25

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

26 Chapter 1: Instruction Formats

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
2 Instruction Overview
2.1 Instruction Subsets

For easier reference, the instruction descriptions are divided
into five instruction subsets. The following sections describe
the function, mnemonic syntax, opcodes, affected flags, and
possible exceptions generated by all instructions in the AMDG64
architecture:

Chapter 3, “General-Purpose Instruction Reference”—The
general-purpose instructions are used in basic software
execution. Most of these load, store, or operate on data in
the general-purpose registers (GPRs), in memory, or in both.
Other instructions are used to alter sequential program flow
by branching to other locations within the program or to
entirely different programs.

Chapter 4, “System Instruction Reference”—The system
instructions establish the processor operating mode, access
processor resources, handle program and system errors, and
manage memory.

“128-Bit Media Instruction Reference” in Volume 4—The 128-
bit media instructions load, store, or operate on data located
in the 128-bit XMM registers. These instructions define both
vector and scalar operations on floating-point and integer
data types. They include the SSE and SSE2 instructions that
operate on the XMM registers. Some of these instructions
convert source operands in XMM registers to destination
operands in GPR, MMX, or x87 registers or otherwise affect
XMM state.

“64-Bit Media Instruction Reference” in Volume 5—The 64-bit
media instructions load, store, or operate on data located in
the 64-bit MMX registers. These instructions define both
vector and scalar operations on integer and floating-point
data types. They include the legacy MMX™ instructions, the
3DNow!™ instructions, and the AMD extensions to the MMX
and 3DNow! instruction sets. Some of these instructions
convert source operands in MMX registers to destination
operands in GPR, XMM, or x87 registers or otherwise affect
MMX state.

Chapter 2: Instruction Overview

27

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

m “x87 Floating-Point Instruction Reference” in Volume 5—The
x87 instructions are used in legacy floating-point
applications. Most of these instructions load, store, or
operate on data located in the x87 ST(0)-ST(7) stack
registers (the FPRO-FPR7 physical registers). The
remaining instructions within this category are used to
manage the x87 floating-point environment.

The description of each instruction covers its behavior in all
operating modes, including legacy mode (real, virtual-8086, and
protected modes) and long mode (compatibility and 64-bit
modes). Details of certain kinds of complex behavior—such as
control-flow changes in CALL, INT, or FXSAVE instructions—
have cross-references in the instruction-detail pages to detailed
descriptions in volumes 1 and 2.

Two instructions—CMPSD and MOVSD—use the same
mnemonic for different instructions. Assemblers can
distinguish them on the basis of the number and type of
operands with which they are used.

2.2 Reference-Page Format

Figure 2-1 on page 29 shows the format of an instruction-detail
page. The instruction mnemonic is shown in bold at the top-left,
along with its name. In this example, POPFD is the mnemonic
and POP to EFLAGS Doubleword is the name. Next, there is a
general description of the instruction’s operation. Many
descriptions have cross-references to more detail in other parts
of the manual.

Beneath the general description, the mnemonic is shown again,
together with the related opcode(s) and a description summary.
Related instructions are listed below this, followed by a table
showing the flags that the instruction can affect. Finally, each
instruction has a summary of the possible exceptions that can
occur when executing the instruction. The columns labeled
“Real” and “Virtual-8086” apply only to execution in legacy
mode. The column labeled “Protected” applies both to legacy
mode and long mode, because long mode is a superset of legacy
protected mode.

The 128-bit and 64-bit media instructions also have diagrams
illustrating the operation. A few instructions have examples or
pseudocode describing the action.

28

Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Mnemonic and any operands Opcode Description of operation
AMDDI
24594 Rev.3.07 September 2003 AMD64 Technology
AAM ASCII Adjust After Multiply

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH (AL/10d)
AL (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction djrectly in binary, it can adjust to any base specified by the
immediate byte value (ib) spffixed onto the D4h opcode. For example, code D408h for
octal, D40Ah for decimal, and D40Ch for duodecimal (base 12).

Using this instruction in 64{bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)

“M” means the flag is either set or

Related Instructions cleared, depending on the result.

AAA, AAD, AAS
rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u M| M u|mju
21 |20 | 19| 18| 17 | 16 | 14 13-12 mi1w| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X 8-bit immediate value was 0.
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

Possible exceptions “Protected” column Alphabetic mnemonic locator
and causes, by mode covers both legacy
of operation and long mode

Figure 2-1. Format of Instruction-Detail Pages

Chapter 2: Instruction Overview 29

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

2.3 Summary of Registers and Data Types

2.3.1 General-Purpose

This section summarizes the registers available to software
using the five instruction subsets described in “Instruction
Subsets” on page 27. For details on the organization and use of
these registers, see their respective chapters in volumes 1 and 2.

Registers. The size and number of general-purpose registers

Instructions (GPRs) depends on the operating mode, as do the size of the
flags and instruction-pointer registers. Figure 2-2 shows the
registers available in legacy and compatibility modes.

register high low
encoding 8-bit 8-bit 16-bit 32-bit
0 AH@| AL | AX EAX
3 BH@z)| BL BX EBX
1 CHe)| G X ECX
2 DHe)| DL DX EDX
6 SI SI ESI
7 DI DI EDI
5 BP BP EBP
4 SP SP ESP
31 16 15 0
FLAGS FLAGS EFLAGS
IP IP EIP
31 0
513-311.eps
Figure 2-2. General Registers in Legacy and Compatibility Modes
Figure 2-3 on page 31 shows the registers accessible in 64-bit
mode. Compared with legacy mode, registers become 64 bits
wide, eight new data registers (R8-R15) are added and the low
byte of all 16 GPRs is available for byte operations, and the four
high-byte registers of legacy mode (AH, BH, CH, and DH) are
not available if the REX prefix is used. The high 32 bits of
30 Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

doubleword operands are zero-extended to 64 bits, but the high
bits of word and byte operands are not modified by operations
in 64-bit mode. The RFLAGS register is 64 bits wide, but the
high 32 bits are reserved. They can be written with anything but
they read as zeros (RAZ).

register ! zero-extended ! low
encoding for 32-bit operands 8-bit 16-bit 32-bit 64-bit
0 AH* | AL AX EAX RAX
3 BH* | BL BX EBX RBX
1 cH* | CL X ECX RCKX
2 DH* | DL DX EDX RDX
6 SIL¥*] Sl ESI RSI
7 DIL**] DI EDI RDI
5 BPL**| BP EBP RBP
4 SPL¥*| SP ESP RSP
8 R8B R8W R8D R8
9 RB| ROW R9D R9
10 R10B R10W R10D RIO
[} R11B R1TW R1ID RN
12 R12B R12W R12D Ri2
13 R13B R13W R13D RI3
14 R14B| RM4W R14D RI4
15 R15B R1I5SW R15D RI15
63 32 3 615 87 0
0 RFLAGS —
RIP
63 32 31 0 *Not addressable when

a REX prefix is used.

** Only addressable when
a REX prefix is used.

Figure 2-3. General Registers in 64-Bit Mode

Chapter 2: Instruction Overview 31

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

For most instructions running in 64-bit mode, access to the
extended GPRs requires a REX instruction prefix (page 14).

Figure 2-4 shows the segment registers which, like the
instruction pointer, are used by all instructions. In legacy and
compatibility modes, all segments are accessible. In 64-bit
mode, which uses the flat (non-segmented) memory model, only
the CS, FS, and GS segments are recognized, whereas the
contents of the DS, ES, and SS segment registers are ignored
(the base for each of these segments is assumed to be zero, and
neither their segment limit nor attributes are checked). For
details, see “Segmented Virtual Memory” in Volume 2.

Legacy Mode and 64-Bit
Compatibility Mode Mode

cS (&)

(Attributes only)

DS ignored

ES ignored

FS
FS (Base only)

GS
(Base only)

GS

SS ignored

15 0 15 0

513-312.eps

Figure 2-4. Segment Registers

Data Types. Figure 2-5 on page 33 shows the general-purpose
data types. They are all scalar, integer data types. The 64-bit
(quadword) data types are only available in 64-bit mode, and for
most instructions they require a REX instruction prefix.

32

Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005

127 Signed Integer

AMDG64 Technology

s 16 bytes (64-bit mode only)

Double
Quadword

S|

8 bytes (64-bit mode only) Quadword

63

Unsigned Integer
127

s 4 bytes Doubleword

3l s 2 bytes Word

15 B Byte

7 0

16 bytes (64-bit mode only)

Double
Quadword

8 bytes (64-bit mode only) Quadword

63

513-326.eps

Figure 2-5. General-Purpose Data Types

4 bytes Doubleword

3 2 bytes Word

15 Byte

Packed BCD

BCD Digit
7 3{ Bit

0

232 System Registers. The system instructions use several specialized
Instructions registers shown in Figure 2-6 on page 34. System software uses
these registers to, among other things, manage the processor’s
operating environment, define system resource characteristics,
and monitor software execution. With the exception of the
RFLAGS register, system registers can be read and written only

from privileged software.

All system registers are 64 bits wide, except for the descriptor-
table registers and the task register, which include 64-bit base-
address fields and other fields.

Chapter 2: Instruction Overview

33

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

..

Control Registers Extended-Feature-Enable Register Memory-Typing Registers
CRO | EFER MTRRcap
CR2 MTRRdefType
CR3 System-Configuration Register MTRRphysBasen
CR4 | SYSCFG MTRRphysMaskn
CR8 MTRRfixn
System-Linkage Registers PAT
. STAR TOP_MEM
System-Flags Register R TOP_MEN2
RFLAGS
CSTAR :
SFMASK Performance-Monitoring Registers
Debug Registers FS.base 15C
DRO GS.base PerfEvtSeln
DRI KernelGSbase PerfCtrn
DR2 SYSENTER_CS E
DR3 SYSENTER_ESP Machine-Check Registers ~ +
DR6 SYSENTER_EIP MCG_CAP
DR7 MCG_STAT
Debug-Extension Registers MCG_—CTL
Descriptor-Table Registers DebugCIMSR M!\C/IJQS_TS\EJS
o LastBranchFromIP I\/IC/f "ODR
R LastBranchTolP MO'_MISC
DR LastIntFromIP =
LastIntTolP ’i
Task Register Model-Specific Registers
| R

513-260.eps

Figure 2-6. System Registers

Data Structures. Figure 2-7 on page 35 shows the system data
structures. These are created and maintained by system
software for use in protected mode. A processor running in
protected mode uses these data structures to manage memory
and protection, and to store program-state information when an
interrupt or task switch occurs.

34

Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Segment Descriptors (Contained in Descriptor Tables) Task-State Segment
| Code | Gate
| Stack | Task-State Segment
| Data | Local-Descriptor Table

Descriptor Tables

...

Global-Descriptor Table Interrupt-Descriptor Table Local-Descriptor Table '
Descriptor Gate Descriptor Descriptor '
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor :

...

Page-Map Level-4 Page-Directory Pointer Page Directory Page Table

...

513-261.eps

Figure 2-7. System Data Structures

2.3.3 128-Bit Media Registers. The 128-bit media instructions use the 128-bit XMM

Instructions registers. The number of available XMM data registers depends
on the operating mode, as shown in Figure 2-8 on page 36. In
legacy and compatibility modes, the eight legacy XMM data
registers (XMMO0-XMM?7) are available. In 64-bit mode, eight
additional XMM data registers (XMM8-XMM15) are available
when a REX instruction prefix is used.

The MXCSR register contains floating-point and other control
and status flags used by the 128-bit media instructions. Some
128-bit media instructions also use the GPR (Figure 2-2 and

Chapter 2: Instruction Overview 35

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005

127

Figure 2-3) and the MMX registers (Figure 2-10 on page 38) or
set or clear flags in the rFLAGS register (see Figure 2-2 and
Figure 2-3).

XMM Data Registers

xmmO

xmml1

xmm2

xmm3

xmm4

xmmb5

Xmm6

xmm7

Xxmm8

xmm9

xmm10

xmmi1

xmm12

xmm13

xmm1i4

xmm15

:| Available in all modes
:| Available only in 64-bit mode

128-Bit Media Control and Status Register MXCSR

31 0

513-314.ps

Figure 2-8. 128-Bit Media Registers
Data Types. Figure 2-9 on page 37 shows the 128-bit media data
types. They include floating-point and integer vectors and
floating-point scalars. The floating-point data types include
IEEE-754 single precision and double precision types.

36 Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Vector (Packed) Floating-Point Double Precision and Single Precision
127 115 63 51 0
S| exp significand s exp significand
S| exp significand o exp significand o exp significand o exp significand
127 18 95 86 63 54 3 b) 0
Vector (Packed) Signed Integer Quadword, Doubleword, Word, Byte
s quadword s quadword
s doubleword s doubleword s doubleword s doubleword
s word |{ word | word | word | word |{ word | word |{ word
sl byte |5 byte [f| byte [1 byte |1 byte [byte s byte [f byte [byte || byte |1 byte |1 byte [f| byte |5 byte [byte | byte
27 N9 03 95 87 79 71 63 55 47 39 3] 23 15 7 0
Vector (Packed) Unsigned Integer Quadword, Doubleword, Word, Byte
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte
27 N9 03 95 87 79 71 63 55 47 39 3] 23 15 7 0
Scalar Floating-Point Double Precision and Single Precision
s exp significand
63 2 | exp significand
3 by) 0
Scalar Unsigned Integers
double quadword
127 quadword
63 doubleword
3 word
15 byte
7 b
513-316.eps 0
Figure 2-9. 128-Bit Media Data Types
Chapter 2: Instruction Overview 37

AMDA

AMDG64 Technology

2.3.4 64-Bit Media
Instructions

24594 Rev. 3.10 February 2005

Registers. The 64-bit media instructions use the eight 64-bit
MMX registers, as shown in Figure 2-10. These registers are
mapped onto the x87 floating-point registers, and 64-bit media
instructions write the x87 tag word in a way that prevents an
x87 instruction from using MMX data.

Some 64-bit media instructions also use the GPR (Figure 2-2
and Figure 2-3) and the XMM registers (Figure 2-8).

MMX Data Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

513-327.eps

Figure 2-10. 64-Bit Media Registers

Data Types. Figure 2-11 on page 39 shows the 64-bit media data
types. They include floating-point and integer vectors and
integer scalars. The floating-point data type, used by 3DNow!
instructions, consists of a packed vector or two IEEE-754 32-bit
single-precision data types. Unlike other kinds of floating-point
instructions, however, the 3DNow!™ instructions do not
generate floating-point exceptions. For this reason, there is no
register for reporting or controlling the status of exceptions in
the 64-bit-media instruction subset.

38

Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Vector (Packed) Single-Precision Floating-Point
s exp significand S| exp significand
63 54 3 by) 0
Vector (Packed) Signed Integers
s doubleword g doubleword
s word | word | word | word
sl byte [byte [f| byte [f byte |1 byte |{ byte |1 byte |f| byte
63 55 47 39 3] 23 15 7 0
Vector (Packed) Unsigned Integers
doubleword doubleword
word word word word
byte | byte | byte | byte | byte | byte | byte | byte
63 55 47 39 3] 23 15 7 0
Signed Integers
s quadword
63 s doubleword
31 s word
15 5| byte
7 0
Unsigned Integers
quadword
63 doubleword
31 word
15 byte
"
513-319.eps 0
Figure 2-11. 64-Bit Media Data Types
Chapter 2: Instruction Overview 39

AMDA

AMDG64 Technology

2.3.5 x87 Floating-
Point Instructions

24594 Rev. 3.10 February 2005

Registers. The x87 floating-point instructions use the x87
registers shown in Figure 2-12. There are eight 80-bit data
registers, three 16-bit registers that hold the x87 control word,
status word, and tag word, and three registers (last instruction
pointer, last opcode, last data pointer) that hold information
about the last x87 operation.

The physical data registers are named FPRO-FPR7, although
x87 software references these registers as a stack of registers,
named ST(0)-ST(7). The x87 instructions store operands only in
their own 80-bit floating-point registers or in memory. They do
not access the GPR or XMM registers.

x87 Data Registers
79 0

fpro

fpr

fpr2

fpr3

fpra

fprs

fpré

fpr7

Instruction Pointer (rIP) Control Word

Data Pointer (rDP) Status Word

63 Opcode Tag Word
10 0 15 0

513-321.eps

Figure 2-12. x87 Registers

Data Types. Figure 2-13 on page 41 shows all x87 data types. They
include three floating-point formats (80-bit double-extended
precision, 64-bit double precision, and 32-bit single precision),
three signed-integer formats (quadword, doubleword, and

40

Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

word), and an 80-bit packed binary-coded decimal (BCD)

format.
Floating-Point
79 63 0
s exp i significand Er(:é?slieo-rlixtended
7 s exp significand Double Precision
03 °! s exp significand Single Precision
31 2 0
Signed Integer
s 8 bytes Quadword
63 s 4 bytes Doubleword
3 s 2 bytes Word
15 0
Binary-Coded Decimal (BCD)
s Packed Decimal
79 7 0

513-317eps

Figure 2-13. x87 Data Types

2.4 Summary of Exceptions

Table 2-1 on page 42 lists all possible exceptions. The table
shows the interrupt-vector numbers, names, mnemonics,
source, and possible causes. Exceptions that apply to specific
instructions are documented with each instruction in the
instruction-detail pages that follow.

Chapter 2: Instruction Overview 41

AMDA

AMD64 Technology 24594 Rev.3.10 February 2005
Table 2-1. Interrupt-Vector Source and Cause
Vector Interrupt (Exception) Mnemonic | Source Cause
0 Divide-By-Zero-Error #DE Software | DIV, IDIV, AAM instructions
1 Debug #DB Internal | Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External | External NMI signal
3 Breakpoint #BP Software | INT3 instruction
4 Overflow #OF Software | INTO instruction
5 Bound-Range #BR Software | BOUND instruction
6 Invalid-Opcode #UD Internal | Invalid instructions
7 Device-Not-Available #NM Internal | x87 instructions
8 Double-Fault #DF Internal | Interrupt during an interrupt
9 Coprocessor-Segment-Overrun - External | Unsupported (reserved)
10 Invalid-TSS #TS Internal | Task-state segment access and task switch
1 Segment-Not-Present #NP Internal | Segment access through a descriptor
12 Stack #SS Internal | SS register loads and stack references
13 General-Protection #GP Internal | Memory accesses and protection checks
14 Page-Fault #PF Internal | Memory accesses when paging enabled
15 Reserved -
16 | Floating-Point Exception-Pending #MF Software :‘(I?;t?r?;t;:fn[t)?rgrﬂg::sblt media
17 Alignment-Check #AC Internal | Memory accesses
18 Machine-Check #MC :;:::Il Model specific
19 SIMD Floating-Point #XF Internal | 128-bit media floating-point instructions
20-31 | Reserved (Internal and External) -
0-255 | External Interrupts (Maskable) #INTR External | External interrupt signal
0-255 | Software Interrupts - Software | INTn instruction
42 Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

2.5 Notation

2.51 Mnemonic
Syntax

Each instruction has a syntax that includes the mnemonic and
any operands that the instruction can take. Figure 2-14 shows
an example of a syntax in which the instruction takes two
operands. In most instructions that take two operands, the first
(left-most) operand is both a source operand (the first source
operand) and the destination operand. The second (right-most)
operand serves only as a source, not a destination.

ADDPD xmm1, xmm2/mem128

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand 513-322.eps

Figure 2-14. Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of
source and destination operands:

m cReg—Control register.

m dReg—Debug register.

m imm8—Byte (8-bit) immediate.

m imml16—Word (16-bit) immediate.

m imm16/32—Word (16-bit) or doubleword (32-bit) immediate.
m imm32—Doubleword (32-bit) immediate.

m imm32/64—Doubleword (32-bit) or quadword (64-bit)
immediate.

n imm64—Quadword (64-bit) immediate.

m mem—An operand of unspecified size in memory.
m mem8—Byte (8-bit) operand in memory.

m meml16—Word (16-bit) operand in memory.

m meml16/32—Word (16-bit) or doubleword (32-bit) operand in
memory.

m mem32—Doubleword (32-bit) operand in memory.

Chapter 2: Instruction Overview 43

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

mem32/48—Doubleword (32-bit) or 48-bit operand in
memory.

mem48—48-bit operand in memory.

mem64—Quadword (64-bit) operand in memory.
mem128—Double quadword (128-bit) operand in memory.
mem16:16—Two sequential word (16-bit) operands in mem-
ory.

mem16:32—A doubleword (32-bit) operand followed by a
word (16-bit) operand in memory.
mema32real—Single-precision (32-bit) floating-point operand
in memory.

mem32int—Doubleword (32-bit) integer operand in mem-
ory.

memo64real—Double-precision (64-bit) floating-point oper-
and in memory.

mem64int—Quadword (64-bit) integer operand in memory.

memd80real —Double-extended-precision (80-bit) floating-
point operand in memory.

mem80dec—80-bit packed BCD operand in memory, contain-
ing 18 4-bit BCD digits.

memZ2env—16-bit x87 control word or x87 status word.

mem14/28env—14-byte or 28-byte x87 environment. The x87
environment consists of the x87 control word, x87 status
word, x87 tag word, last non-control instruction pointer, last
data pointer, and opcode of the last non-control instruction
completed.

mem94/108env—94-byte or 108-byte x87 environment and
register stack.

memb512env—512-byte environment for 128-bit media, 64-bit
media, and x87 instructions.

mmx—Quadword (64-bit) operand in an MMX register.

mmx]1—Quadword (64-bit) operand in an MMX register,
specified as the left-most (first) operand in the instruction
syntax.

mmx2—Quadword (64-bit) operand in an MMX register,
specified as the right-most (second) operand in the
instruction syntax.

mmx/mem32—Doubleword (32-bit) operand in an MMX
register or memory.

44

Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

n mmx/mem64—Quadword (64-bit) operand in an MMX
register or memory.

m mmxIl/mem64—Quadword (64-bit) operand in an MMX
register or memory, specified as the left-most (first) operand
in the instruction syntax.

n mmx2/mem64—Quadword (64-bit) operand in an MMX
register or memory, specified as the right-most (second)
operand in the instruction syntax.

m moffset—Direct memory offset that specifies an operand in
memory.

m moffset8&—Direct memory offset that specifies a byte (8-bit)
operand in memory.

m moffsetl6—Direct memory offset that specifies a word (16-
bit) operand in memory.

m moffset32—Direct memory offset that specifies a
doubleword (32-bit) operand in memory.

m moffset64—Direct memory offset that specifies a quadword
(64-bit) operand in memory.

m pntrl6:16—Far pointer with 16-bit selector and 16-bit offset.
m pntrl6:32—Far pointer with 16-bit selector and 32-bit offset.
m reg—Operand of unspecified size in a GPR register.

m reg8—Byte (8-bit) operand in a GPR register.

m regl6—Word (16-bit) operand in a GPR register.

m regl6/32—Word (16-bit) or doubleword (32-bit) operand in a
GPR register.

n reg32—Doubleword (32-bit) operand in a GPR register.
m reg64—Quadword (64-bit) operand in a GPR register.

n reg/mem8—Byte (8-bit) operand in a GPR register or
memory.

n reg/mem16—Word (16-bit) operand in a GPR register or
memory.

m reg/mem32—Doubleword (32-bit) operand in a GPR register
Oor memory.

n reg/mem64—Quadword (64-bit) operand in a GPR register or
memory.

m rel8off—Signed 8-bit offset relative to the instruction
pointer.

Chapter 2: Instruction Overview 45

AMDA

AMDG64 Technology

2.5.2 Opcode Syntax

24594 Rev. 3.10 February 2005

rel160ff—Signed 16-bit offset relative to the instruction
pointer.

rel320ff—Signed 32-bit offset relative to the instruction
pointer.

segReg or sReg—Word (16-bit) operand in a segment register.
ST(0)—x87 stack register 0.
ST(1)—x87 stack register i, where i is between 0 and 7.

xmm—Double quadword (128-bit) operand in an XMM
register.

xmmIl—Double quadword (128-bit) operand in an XMM
register, specified as the left-most (first) operand in the
instruction syntax.

xmmZ2—Double quadword (128-bit) operand in an XMM
register, specified as the right-most (second) operand in the
instruction syntax.

xmm/mem64—Quadword (64-bit) operand in a 128-bit XMM
register or memory.

xmm/mem128—Double quadword (128-bit) operand in an
XMDM register or memory.

xmml1/mem128—Double quadword (128-bit) operand in an
XMM register or memory, specified as the left-most (first)
operand in the instruction syntax.

xmm?2/mem128—Double quadword (128-bit) operand in an
XMM register or memory, specified as the right-most
(second) operand in the instruction syntax.

In addition to the notation shown above in “Mnemonic Syntax”
on page 43, the following notation indicates the size and type of
operands in the syntax of an instruction opcode:

/digit—Indicates that the ModRM byte specifies only one
register or memory (r/m) operand. The digit is specified by
the ModRM reg field and is used as an instruction-opcode
extension. Valid digit values range from 0 to 7.

/r—Indicates that the ModRM byte specifies both a register
operand and a reg/mem (register or memory) operand.

cb, cw, cd, cp—Specifies a code-offset value and possibly a
new code-segment register value. The value following the
opcode is either one byte (cb), two bytes (cw), four bytes
(cd), or six bytes (cp).

46

Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

m b, 1w, id—Specifies an immediate-operand value. The
opcode determines whether the value is signed or unsigned.
The value following the opcode, ModRM, or SIB byte is
either one byte (ib), two bytes (iw), or four bytes (id). Word
and doubleword values start with the low-order byte.

m +rb, +rw, +rd, +rq—Specifies a register value that is added to
the hexadecimal byte on the left, forming a one-byte opcode.
The result is an instruction that operates on the register
specified by the register code. Valid register-code values are
shown in Table 2-2.

m m64—Specifies a quadword (64-bit) operand in memory.

m +i—Specifies an x87 floating-point stack operand, ST(z). The
value is used only with x87 floating-point instructions. It is
added to the hexadecimal byte on the left, forming a one-
byte opcode. Valid values range from 0 to 7.

Table 2-2. +rb, +rw, +rd, and +rq Register Value

REX.B Specified Register
. Value
Bit +1b +HW +rd +q
0 AL AX EAX RAX
1 CL X ECX RCX
2 DL DX EDX RDX
0 3 BL BX EBX RBX
or no REX
Prefix 4 AH, SPL' SP ESP RSP
5 CH, BPL' BP EBP RBP
6 DH, SIL Sl ESI RSI
7 BH, DIL! DI EDI RDI
1. See "REX Prefixes” on page 14.

Chapter 2: Instruction Overview 47

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Table 2-2. +rb, +rw, +rd, and +rq Register Value (continued)

REX.B Specified Register
Bit' Value +rb +HW +rd +rq
0 R8B R8W R8D R8
1 R9B ROW R9D R9
2 R10B R10W R10D R10
3 R11B R1IW R11D R1
1 4 R12B R12W R12D R12
5 R13B R13W R13D R13
6 R14B R14W R14D R14
7 R15B R15W R15D R15
1. See "REX Prefixes” on page 14.

48 Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005

2.5.3 Pseudocode

AMDG64 Technology

Pseudocode examples are given for the actions of several
complex instructions (for example, see “CALL (Near)” on
page 87). The following definitions apply to all such
pseudocode examples:

L1717 070770 7077077070777 7 7070777077077 777 7077777770777 77777777777
// Basic Definitions
L1717 070777 7007077770770 7 7770770070770 7 7777777777777 77770777777 777777177

/] AT

REAL_MODE

PROTECTED_MODE

VIRTUAL_MODE
LEGACY_MODE
LONG_MODE
64BIT_MODE

COMPATIBILITY_MODE

cr

0.pe=0)

comments start with these double slashes.

(cr0.pe=1) && (rflags.vm=0))

efer.1ma=0)
efer.Ima=1)

((efer.Ima=1)
(efer.Ima=1)

PAGING_ENABLED = (cr0.pg=1)
ALTGNMENT_CHECK_ENABLED = ((crO0.am=1) && (eflags.ac=1) &&
current privilege level

CPL
OPERAND_SIZE
ADDRESS_SIZE
STACK_SIZE

old_RIP
o1d_RSP
01d_RFLAGS
01d_CS
01d_DS
old_ES
old_FS
01d_GS
01d_SS

RIP

RSP

RBP
RFLAGS
next_RIP
CS

SS

SRC

DEST

temp_*

the
16,

= 16,

16,

RIP
RSP

RFLAGS

CS
DS
ES
FS
GS
SS

the
the
the
the
RIP

the
sel
the
sel

the

// 64-bit temporary register

32,
32,
32,

or
or
or

at
at

the
the

selector
selector
selector
selector
selector
selector

current
current
current
current

&&
&&

64 (depending
64 (depending
64 (depending

(cs.L=1)
(cs.L=0)

(
(
((crO0.pe=1) && (rflags.vm=1))
(
(

&& (cs.d=0))

on
on
on

start of current
start of current

at
at
at
at
at
at

the
the
the
the
the
the

start
start
start
start
start
start

RIP register
RSP register
RBP register

of
of
of
of
of
of

RFLAGS register
at start of next instruction

(0-3)

current code
current code
current code

instruction
instruction

at the start of the instruction

(cp1=3))

and 66h/rex prefixes)
and 67h prefixes)
and SS.attr.B)

current
current
current
current
current
current

instruction
instruction
instruction
instruction
instruction
instruction

current CS descriptor, including the subfields:

base Ti

mit attr

current SS descriptor, including the subfields:

base Ti

mit attr

instruction’s Source operand
the instruction’s Destination operand

Chapter 2: Instruction Overview

49

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
temp_*_desc // temporary descriptor, with subfields:

// if it points to a block of memory: sel base Timit attr

// if it’s a gate descriptor: sel offset segment attr

NULL = 0x0000 // null selector is all zeros

// V,Z,A,S are integer variables, assigned a value when an instruction begins
// executing (they can be assigned a different value in the middle of an
// instruction, if needed)

V = 2 if OPERAND_SIZE=16
4 if OPERAND_SIZE=32
8 if OPERAND_SIZE=64

. =2 if OPERAND_SIZE=I6
if OPERAND_SIZE=32
4 if OPERAND_SIZE=64

o~

A =2 if ADDRESS_SIZE=16
if ADDRESS_SIZE=32
8 if ADDRESS_SIZE=64

o~

S =2 if STACK_SIZE=16
if STACK_SIZE=32
8 if STACK_SIZE=64

o~

L1770 70077077700 7707770777077 77177177
// Bit Range Inside a Register
L1170 70777077707 7707770777777 77177177

temp_data.[X:Y] // Bit X through Y in temp_data, with the other bits
// in the register masked off.

L1170 7007 707770777077 7077177177
// Moving Data From One Register To Another
L1170 707 7700770777077 70077077177177

temp_dest.b = temp_src // 1-byte move (copies TlTower 8 bits of temp_src to
// temp_dest, preserving the upper 56 bits of temp_dest)

temp_dest.w = temp_src // 2-byte move (copies Tower 16 bits of temp_src to
// temp_dest, preserving the upper 48 bits of temp_dest)
temp_dest.d = temp_src // 4-byte move (copies Tower 32 bits of temp_src to

// temp_dest, and zeros out the upper 32 bits of temp_dest)
temp_dest.q = temp_src // 8-byte move (copies all 64 bits of temp_src to
// temp_dest)

temp_dest.v = temp_src // 2-byte move if V=2,
// 4-byte move if V=4,

50 Chapter 2: Instruction Overview

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
// 8-byte move if V=8
temp_dest.z = temp_src // 2-byte move if 7=2,
// 4-byte move if 7=4
temp_dest.a = temp_src // 2-byte move if A=2,
// 4-byte move if A=4,
// 8-byte move if A=8
temp_dest.s = temp_src // 2-byte move if S=2,
// 4-byte move if S=4,
// 8-byte move if S=8

LTI 77/7717
// Bitwise Operations
[ITTTTTT 77777 77/7/77/7717/7

temp = a AND b
temp = a OR Db
temp = a XOR b
temp = NOT a

temp = a SHL b
temp = a SHR b

L1170 700770 7707770777077 707717717
// Logical Operations
L1170 700 7707700770777 70777077177177

IF
IF
IF
IF
IF
IF
IF
IF

(FOO && BAR)
(FOO || BAR)
(FOO = BAR)
(FOO != BAR)
(FOO > BAR)
(FOO < BAR)
(FOO >= BAR)
(FOO <= BAR)

LIPTTTIEEDL IR r i r i i i i i r s s s r i sy
// TF-THEN-ELSE
LIDTTTIEEEDL IR rr 7 i i i rr i i r i r s s r s r i rrs gy

IF (FO0)

IF (FO0)

ELSIF (BAR)

Chapter 2: Instruction Overview 51

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

ELSE

IF ((FOO && BAR) || (CONE && HEAD))

LTI 77777 77/7771/7
// Exceptions
[ITTTTTTT 777777777 77/7171/

EXCEPTION [#GP(0)] // error code in parenthesis
EXCEPTION [#UD] // if no error code

possible exception types:

JiIDE // Divide-By-Zero-Error Exception (Vector 0)
#fDB // Debug Exception (Vector 1)

#BP // INT3 Breakpoint Exception (Vector 3)

#fOF // INTO Overflow Exception (Vector 4)

#IBR // Bound-Range Exception (Vector 5)

##UD // Invalid-Opcode Exception (Vector 6)

##NM // Device-Not-Available Exception (Vector 7)
#IDF // Double-Fault Exception (Vector 8)

#TS // Invalid-TSS Exception (Vector 10)

NP // Segment-Not-Present Exception (Vector 11)
#SS // Stack Exception (Vector 12)

##GP // General-Protection Exception (Vector 13)
JFPF // Page-Fault Exception (Vector 14)

JMF // x87 Floating-Point Exception-Pending (Vector 16)
FAC // Alignment-Check Exception (Vector 17)

MC // Machine-Check Exception (Vector 18)

JEXF // SIMD Floating-Point Exception (Vector 19)

L1170 70077077700 7707770777777 77177177
// READ_MEM

// General memory read. This zero-extends the data to 64 bits and returns it.
L1170 700 7700770770777 70777077177177

usage:
temp = READ_MEM.x [seg:offset] // where x is one of {v, z, b, w, d, qJ
// and denotes the size of the memory read

definition:
IF ((seg AND OxFFFC) = NULL) // GP fault for using a null segment to
// reference memory

EXCEPTION [#GP(0)]

IF ((seg=CS) || (seg=DS) || (seg=ES) || (seg=FS) || (seg=GS))

52 Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

// CS,DS,ES,FS,GS check for segment Timit or canonical
IF ((!64BIT_MODE) && (offset is outside seg’s T1imit))
EXCEPTION [#GP(0)]
// #GP fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [#GP(0)]
// #GP fault for non-canonical address in 64-bit mode
ELSIF (seg=SS) // SS checks for segment Timit or canonical
IF ((!64BIT_MODE) && (offset is outside seg’s Timit))
EXCEPTION [#SS(0)]
// stack fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [#SS(0)]
// stack fault for non-canonical address in 64-bit mode
ELSE // ((seg=GDT) || (seg=LDT) || (seg=IDT) || (seg=TSS))
// GDT,LDT,IDT,TSS check for segment 1imit and canonical
IF (offset > seg.limit)
EXCEPTION [#GP(0)] // 4GP fault for segment limit violation
// in all modes
IF ((LONG_MODE) && (offset is non-canonical))
EXCEPTION [#GP(Q0)] // #fGP fault for non-canonical address in long mode

IF (CALIGNMENT_CHECK_ENABLED) && (offset misaligned, considering its

size and alignment))
EXCEPTION [AC(0)]

IF ((64_bit_mode) && ((seg=CS) || (seg=DS) || (seg=ES) || (seg=SS))
temp_linear = offset

ELSE
temp_Tlinear = seg.base + offset

IF ((PAGING_ENABLED) && (virtual-to-physical translation for temp_linear
results in a page-protection violation))
EXCEPTION [#PF(error_code)]l // page fault for page-protection violation
// (U/S violation, Reserved bit violation)

IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
EXCEPTION [#PF(error_code)]l // page fault for not-present page

temp_data = memory [temp_linear].x // zero-extends the data to 64
// bits, and saves it in temp_data

RETURN (temp_data) // return the zero-extended data

L1117 07 0770700007007 T
// WRITE_MEM // General memory write

LIDTTTIEEDL IR r i r i i i i i i r i r s s r s r sy

usage:
WRITE_MEM.x [seg:offset] = temp.x // where <X> is one of these:

Chapter 2: Instruction Overview 53

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

// AV, Z, B, W, D, Q} and denotes the
// size of the memory write

definition:

IF ((seg & OxFFFC)= NULL) // GP fault for using a null segment
// to reference memory
EXCEPTION [#GP(0)]

IF (seg isn’t writable) // GP fault for writing to a read-only segment
EXCEPTION [#GP(0)]

IF ((seg=CS) || (seg=DS) || (seg=ES) || (seg=FS) || (seg=GS))
// CS,DS,ES,FS,GS check for segment Timit or canonical
IF ((!64BIT_MODE) && (offset is outside seg’s Timit))
EXCEPTION [#GP(0)]
// #GP fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [#GP(0)]
// #GP fault for non-canonical address in 64-bit mode
ELSIF (seg=SS) // SS checks for segment Timit or canonical
IF ((!64BIT_MODE) && (offset is outside seg’s Timit))
EXCEPTION [#SS(0)]
// stack fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [#SS(0)]
// stack fault for non-canonical address in 64-bit mode
ELSE // ((seg=GDT) || (seg=LDT) || (seg=IDT) || (seg=TSS))
// GDT,LDT,IDT,TSS check for segment 1imit and canonical
IF (offset > seg.limit)
EXCEPTION [#GP(0)]
// #GP fault for segment 1imit violation in all modes
IF ((LONG_MODE) && (offset is non-canonical))
EXCEPTION [#GP(0)]
// #GP fault for non-canonical address in long mode

IF (CALIGNMENT_CHECK_ENABLED) && (offset is misaligned, considering
its size and alignment))
EXCEPTION [#AC(0)]

IF ((64_bit_mode) && ((seg=CS) || (seg=DS) || (seg=ES) || (seg=SS))
temp_linear = offset

ELSE
temp_Tlinear = seg.base + offset

IF ((PAGING_ENABLED) && (the virtual-to-physical translation for
temp_Tinear results in a page-protection violation))
{
EXCEPTION [#PF(error_code)]
// page fault for page-protection violation
// (U/S violation, Reserved bit violation)

54 Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

}

IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
EXCEPTION [#PF(error_code)] // page fault for not-present page

memory [temp_linear].x = temp.x // write the bytes to memory

[10777 07077770777 77
// PUSH // Write data to the stack
[11777 77077770777 777777777777777777777777777777707777777777777°77777777777777777777

usage:
PUSH.x temp // where x is one of these: {v, z, b, w, d, q} and
// denotes the size of the push

definition:

WRITE_MEM.x [SS:RSP.s - X] = temp.x // write to the stack
RSP.s = RSP - X // point rsp to the data just written

[10777 77077770777 7777777777777777777777777777777077777°777777777777777777777771777177
// POP // Read data from the stack, zero-extend it to 64 bits
[11777 77077770777 777777777777777777777772777777770777777777777777777777777777777777

usage:
POP.x temp // where x is one of these: {v, z, b, w, d, q} and
// denotes the size of the pop

definition:

temp = READ_MEM.x [SS:RSP.s] // read from the stack
RSP.s = RSP + X // point rsp above the data just written

[ITTTTTTT 777777777777 77/7/771771/
// READ_DESCRIPTOR // Read 8-byte descriptor from GDT/LDT, return the descriptor
LTI 777777777 77777777777777777777777777777777777777/7/7/7717/7

usage:
temp_descriptor = READ_DESCRIPTOR (selector, chktype)
// chktype field is one of the following:

// cs_chk used for far call and far Jjump
// clg_chk used when reading CS for far call or far jump through call gate
// ss_chk used when reading SS

// iret_chk used when reading CS for IRET or RETF
// intcs_chk used when readin the CS for interrupts and exceptions

definition:

Chapter 2: Instruction Overview 55

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

temp_offset = selector AND Oxfff8 // upper 13 bits give an offset
// in the descriptor table

IF (selector.TI = 0) // read 8 bytes from the gdt, split it into
// (base,limit,attr) if the type bits

temp_desc = READ_MEM.q [gdt:temp_offset]
// indicate a block of memory, or split
// it into (segment,offset,attr)
// if the type bits indicate
// a gate, and save the result in temp_desc
ELSE
temp_desc = READ_MEM.q [1dt:temp_offset]

// read 8 bytes from the 1dt, split it into
// (base,limit,attr) if the type bits
// indicate a block of memory, or split

// it into (segment,offset,attr) if the type

// bits indicate a gate, and save the result
// in temp_desc

IF (selector.rpl or temp_desc.attr.dpl is illegal for the current mode/cpl)
EXCEPTION [#GP(selector)]

IF (temp_desc.attr.type is illegal for the current mode/chktype)
EXCEPTION [#GP(selector)]

IF (temp_desc.attr.p=0)
EXCEPTION [#NP(selector)]

RETURN (temp_desc)

[ITTTTTT 77777777 777/771/
// READ_IDT // Read an 8-byte descriptor from the IDT, return the descriptor
[ITTTTTTT 777777777777 77/77/7717

usage:
temp_idt_desc = READ_IDT (vector)
// "vector" is the interrupt vector number

definition:

IF (LONG_MODE) // long-mode idt descriptors are 16 bytes long
temp_offset = vector*16

ELSE // (LEGACY_MODE) legacy-protected-mode idt descriptors are 8 bytes long
temp_offset = vector*8

temp_desc = READ_MEM.q [idt:temp_offset]
// read 8 bytes from the idt, split it into
// (segment,offset,attr), and save it in temp_desc

IF (temp_desc.attr.dpl is illegal for the current mode/cpl)

56 Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

// exception, with error code that indicates this idt gate
EXCEPTION [#GP(vector*8+2)]

IF (temp_desc.attr.type is illegal for the current mode)
// exception, with error code that indicates this idt gate
EXCEPTION [#GP(vector*8+2)]

IF (temp_desc.attr.p=0)
EXCEPTION [#NP(vector*8+2)]
// segment-not-present exception, with an error code that
// indicates this idt gate

RETURN (temp_desc)

LIDTTTIEEEDL TP T I Er i r i i r i i s sy s rr i rrs gy
// READ_INNER_LEVEL_STACK_POINTER

// Read a new stack pointer (rsp or ss:esp) from the tss
LI 777777 77/771/

usage:
temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (new_cpl, ist_index)

definition:

IF (LONG_MODE)
{
IF (ist_index>0)
// if IST is selected, read an ISTn stack pointer from the tss
temp_RSP = READ_MEM.q [tss:ist_index*8+28]
ELSE // (ist_index=0)
// otherwise read an RSPn stack pointer from the tss
temp_RSP = READ_MEM.q [tss:new_cpl*8+4]

temp_SS_desc.sel = NULL + new_cpl
// in long mode, changing to lower cpl sets SS.sel to
// NULL+new_cp]
}
ELSE // (LEGACY_MODE)
{
temp_RSP = READ_MEM.d [tss:new_cpl*8+4] // read ESPn from the tss
temp_sel = READ_MEM.d [tss:new_cpl*8+8] // read SSn from the tss
temp_SS_desc = READ_DESCRIPTOR (temp_sel, ss_chk)
}

return (temp_RSP:temp_SS_desc)
[T 7777777 777/77/7717/7

// READ_BIT_ARRAY // Read 1 bit from a bit array in memory
L1700 70 0070007000700 700777 r i i i i r s iy

Chapter 2: Instruction Overview 57

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

usage:
temp_value = READ_BIT_ARRAY ([mem], bit_number)

definition:

temp_BYTE = READ_MEM.b [mem + (bit_number SHR 3)]
// read the byte containing the bit

temp_BIT = temp_BYTE SHR (bit_number & 7)
// shift the requested bit position into bit O

return (temp_BIT & 0x01) // return 0" or 1’

58 Chapter 2: Instruction Overview

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

3 General-Purpose Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes,
affected flags, and possible exceptions generated by the
general-purpose instructions. General-purpose instructions are
used in basic software execution. Most of these instructions
load, store, or operate on data located in the general-purpose
registers (GPRs), in memory, or in both. The remaining
instructions are used to alter the sequential flow of the program
by branching to other locations within the program, or to
entirely different programs. With the exception of the MOVD,
MOVMSKPD and MOVMSKPS instructions, which operate on
MMX/XMM registers, the instructions within the category of
general-purpose instructions do not operate on any other
register set.

Most general-purpose instructions are supported in all
hardware implementations of the AMDG64 architecture. The
following general-purpose instructions are implemented only if
their associated CPUID function bit is set:

s CMPXCHGS8B, indicated by bit 8 of CPUID standard
function 1 and extended function 8000_0001h.

s CMPXCHG16B, indicated by ECX bit 13 of CPUID standard
function 1.

m CMOVcc (conditional moves), indicated by bit 15 of CPUID
standard function 1 and extended function 8000_0001h.

s CLFLUSH, indicated by bit 19 of CPUID standard function
1.

s PREFETCH, indicated by bit 31 of CPUID extended
function 8000_0001h.

m MOVD, indicated by bits 25 (MMX™) and 26 (XMM) of
CPUID standard function 1.

m MOVNTI, indicated by bit 26 of CPUID standard function 1.
m SFENCE, indicated by bit 25 of CPUID standard function 1.

s MFENCE, LFENCE, indicated by bit 26 of CPUID standard
function 1.

m Long Mode instructions, indicated by bit 29 of CPUID
extended function 8000 _0001h.

The general-purpose instructions can be used in legacy mode or
64-bit long mode. Compilation of general-purpose programs for

59

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

execution in 64-bit long mode offers three primary advantages:
access to the eight extended, 64-bit general-purpose registers
(for a register set consisting of GPRO-GPR15), access to the 64-
bit virtual address space, and access to the RIP-relative
addressing mode.

For further information about the general-purpose instructions
and register resources, see:

“General-Purpose Programming” in Volume 1.

m “Summary of Registers and Data Types” on page 30.
m “Notation” on page 43.
m “Instruction Prefixes” on page 3.

m Appendix B, “General-Purpose Instructions in 64-Bit Mode.”
In particular, see “General Rules for 64-Bit Mode” on
page 413.

60

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

AAA ASCII Adjust After Addition

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA
instruction after using the ADD instruction to add two unpacked BCD numbers.

If the value in the lower nibble of AL is greater than 9 or the AF flag is set to 1, the
instruction increments the AH register, adds 6 to the AL register, and sets the CF and
AF flags to 1. Otherwise, it does not change the AH register and clears the CF and AF
flags to 0. In either case, AAA clears bits 7-4 of the AL register, leaving the correct
decimal digit in bits 3-0.

This instruction also makes it possible to add ASCII numbers without having to mask
off the upper nibble ‘3°.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Create an unpacked BCD number.

W ¥ (Invalid in 64-bit mode.)

Related Instructions
AAD, AAM, AAS

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U u M | U | M

21 | 20| 19 | 18 | 17 | 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

AAA 61

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

AAD ASCII Adjust Before Division

Converts two unpacked BCD digits in the AL (least significant) and AH (most
significant) registers to a single binary value in the AL register using the following
formula:

AL = ((10d * AH) + (AL))
After the conversion, AH is cleared to 00h.

In most modern assemblers, the AAD instruction adjusts from base-10 values.
However, by coding the instruction directly in binary, it can adjust from any base
specified by the immediate byte value (ib) suffixed onto the D5h opcode. For example,
code D508h for octal, D50Ah for decimal, and D50Ch for duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Adjust two BCD digits in AL and AH.

AAD D5 0A (Invalid in 64-bit mode.)

Adjust two BCD digits to the immediate byte base.

(None) D5 b (Invalid in 64-bit mode.)

Related Instructions
AAA, AAM, AAS
rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U MM U M/|U

21 (20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

62 AAD

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

AAM ASCII Adjust After Multiply

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH = (AL/10d)
AL (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction directly in binary, it can adjust to any base specified by the
immediate byte value (ib) suffixed onto the D4h opcode. For example, code D408h for
octal, D40Ah for decimal, and D40Ch for duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Create a pair of unpacked BCD values in AH and AL.

AAM D4 0A (Invalid in 64-bit mode.)

Create a pair of unpacked values to the immediate byte base.

(None) D4 b (Invalid in 64-bit mode.)

Related Instructions
AAA, AAD, AAS

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U M| M u | ™ U

21 [20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X 8-bit immediate value was 0.
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

AAM 63

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

AAS ASCII Adjust After Subtraction

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS
instruction after using the SUB instruction to subtract two unpacked BCD numbers.

If the value in AL is greater than 9 or the AF flag is set to 1, the instruction
decrements the value in AH, subtracts 6 from the AL register, and sets the CF and AF
flags to 1. Otherwise, it clears the CF and AF flags and the AH register is unchanged.
In either case, the instruction clears bits 7-4 of the AL register, leaving the correct
decimal digit in bits 3-0.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Create an unpacked BCD number from the contents of the AL
AAS 3F register.
(Invalid in 64-bit mode.)

Related Instructions
AAA, AAD, AAM

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U u M | U | M

21 [20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

64 AAS

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

ADC Add with Carry

Adds the carry flag (CF), the value in a register or memory location (first operand),
and an immediate value or the value in a register a memory location (second
operand), and stores the result in the first operand location. The instruction cannot
add two memory operands. The CF flag indicates a pending carry from a previous
addition operation. The instruction sign-extends an immediate value to the length of
the destination register or memory location.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a carry in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

Use the ADC instruction after an ADD instruction as part of a multibyte or multiword
addition.

The forms of the ADC instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
ADC AL, imm8 14ib Add imm8 to AL + CF.
ADC AX, imm16 15 iw Add imm16 to AX + CF.
ADC EAX, imm32 15id Add imm32 to EAX + CF.
ADC RAX, imm32 151d Add sign-extended imm32 to RAX + CF.
ADC reg/mem8, imm8 80/2ib Add imma8 to req/mem8 + CF.
ADC reg/mem 16, imm 16 81 /2w Add imm 6 to reg/mem 16 + CF.
ADC reg/mem32, imm32 81/2id Add imm32 to reg/mem32 + CF.
ADC reg/mem64, imm32 81/2id Add sign-extended imm32 to reg/memé64 + CF.
ADC reg/mem16, imm8 83/21ib Add sign-extended imma8 to req/mem16 + CF.
ADC reg/mem32, imm8 83/21ib Add sign-extended imm@ to req/mem32 + CF.
ADC reg/mem64, imm8 83/21ib Add sign-extended imm@ to req/mem64 + CF.
ADC reg/mem8, reg8 10/r Add reg8 to reg/mem8 + CF
ADC reg/mem16, reqi6 n/r Add reg16 to req/mem16 + CF.
ADC reg/mem32, reg32 n/r Add reg32 to reg/mem32 + CF.

ADC 65

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description

ADC reg/memé64, reg64 n/r Add reg64 to reg/memé64 + CF.

ADC reg8, reg/mem8 12/r Add reg/mem8 to reg8 + CF.

ADC reg16, reg/mem16 13 /r Add reg/mem16 to regi6 + CF.

ADC reg32, req/mem32 13/r Add reg/mem32 to reg32 + CF.

ADC reg64, reg/mem64 13/r Add reg/mem64 to reg64 + CF.

Related Instructions

ADD, SBB, SUB

rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M| M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

66 ADC

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

ADD Signed or Unsigned Add

Adds the value in a register or memory location (first operand) and an immediate
value or the value in a register a memory location (second operand), and stores the
result in the first operand location. The instruction cannot add two memory operands.
The instruction sign-extends an immediate value to the length of the destination
register or memory operand.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a carry in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

The forms of the ADD instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
ADD AL, imm8 04 ib Add immé8 to AL.
ADD AX, imm16 05 iw Add imm16 to AX.
ADD EAX, imm32 05 id Add imm32 to EAX.
ADD RAX, imm32 05 id Add sign-extended imm32 to RAX.
ADD reg/mem8, imm8 80/0ib Add imma8 to reg/mem8.
ADD reg/mem 16, imm 16 81 /0iw Add imm 6 to reg/mem 16
ADD reg/mem32, imm32 81/0id Add imm32 to reg/mem32.
ADD reg/memé64, imm32 81/0id Add sign-extended imm32 to reg/memé64.
ADD reg/mem16, imm8 83/01b Add sign-extended imm@ to reg/mem16
ADD reg/mem32, imm8 83 /01b Add sign-extended imm@ to reg/mem32.
ADD reg/memé64, imm8 83/01b Add sign-extended imma@ to reg/mem64.
ADD reg/mem8, reg8 00/r Add reg8 to reg/mems.
ADD reg/mem 16, req16 01/r Add reg 16 to reg/mem]e.
ADD reg/mem32, reg32 01/r Add reg32 to reg/mem32.
ADD reg/memé64, reg64 01/r Add reg64 to req/mem64.
ADD reg8, reg/mem8 02 /r Add reg/mem8 to regs.

ADD 67

AMDA

AMDG64 Technology

Mnemonic
ADD reg16, reg/mem16
ADD reg32, reg/mem32
ADD reg64, reg/mem64

Related Instructions

ADC, SBB, SUB

Opcode
03 /r
03 /r
03 /r

24594 Rev. 3.10 February 2005

Description
Add reg/mem16 to regi6.
Add reg/mem32 to reg32.
Add reg/mem64 to reg64.

rFLAGS Affected

ID | VIP| VIF| AC | VM | RF | NT 10PL OF | DF IF TF | SF | ZF | AF | PF | CF
M M M M M M

21 120 | 19 | 18 | 17 | 16 | 14 13-12 nm|101| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection, X X X A memory address exceeded a data segment limit or was non-canon-

#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

68

ADD

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

AND Logical AND

Performs a bitwise AND operation on the value in a register or memory location (first
operand) and an immediate value or the value in a register or memory location
(second operand), and stores the result in the first operand location. The instruction
cannot AND two memory operands.

The instruction sets each bit of the result to 1 if the corresponding bit of both
operands is set; otherwise, it clears the bit to 0. The following table shows the truth
table for the AND operation:

X Y XANDY
0 0 0
0 1 0
1 0 0
1 1 1

The forms of the AND instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

AND AL, imm8 24 b AND the contents of AL with an immediate 8-bit value and store
the result in AL.

AND AX, imm16 25 i AND the contents of AX with an immediate 16-bit value and store
the result in AX.

AND EAX, imms32 25 id AND the contents of EAX with an immediate 32-bit value and
store the result in EAX.

, . AND the contents of RAX with a sign-extended immediate 32-bit

AND RAX, imm32 25 id value and store the result in RAX.

AND reg/mem8, imm8 80 /4 1b AND the contents of reg/mem8 with imm8.

AND reg/mem 16, imm16 81 /4 iw AND the contents of reg/mem 16 with imm 6.

AND reg/mem32, imm32 81 /4id AND the contents of reg/mem32 with imm32.

AND reg/memé64, imm32 81 /41d AND the contents of reg/mem64 with sign-extended imm32.

AND 69

AMDA

AMDG64 Technology

Mnemonic

AND reg/mem 16, imm8
AND reg/mem32, imm8
AND reg/mem64, immé8
AND reg/mem8, reg8

AND reg/mem]6, req16
AND reg/mem32, reg32
AND reg/mem64, reg64
AND reg8, reg/mem8

AND regi6, reg/mem16
AND reg32, reg/mem32
AND reg64, reg/mem64

Related Instructions

TEST, OR, NOT, NEG, XOR

Opcode

83 /4 ib

83 /4ib

83 /4 ib

20/r

21/r

21/r

21/r

2/r

23/r

23/r

23/r

24594 Rev. 3.10 February 2005

Description

AND the contents of reg/mem 16 with a sign-extended 8-bit
value.

AND the contents of reg/mem32 with a sign-extended 8-bit
value.

AND the contents of reg/mem64 with a sign-extended 8-bit
value.

AND the contents of an 8-bit register or memory location with
the contents of an 8-bit register.

AND the contents of a 16-bit register or memory location with the
contents of a 16-bit register.

AND the contents of a 32-bit register or memory location with
the contents of a 32-bit register.

AND the contents of a 64-bit register or memory location with
the contents of a 64-bit register.

AND the contents of an 8-bit register with the contents of an 8-bit
memory location or register.

AND the contents of a 16-bit register with the contents of a 16-bit
memory location or register.

AND the contents of a 32-bit register with the contents of a 32-bit
memory location or register.

AND the contents of a 64-bit register with the contents of a 64-bit
memory location or register.

70

AND

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

rFLAGS Affected
ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U|M]|oO0
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

AND 71

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

BOUND Check Array Bounds

Checks whether an array index (first operand) is within the bounds of an array
(second operand). The array index is a signed integer in the specified register. If the
operand-size attribute is 16, the array operand is a memory location containing a pair
of signed word-integers; if the operand-size attribute is 32, the array operand is a pair
of signed doubleword-integers. The first word or doubleword specifies the lower
bound of the array and the second word or doubleword specifies the upper bound.

The array index must be greater than or equal to the lower bound and less than or
equal to the upper bound. If the index is not within the specified bounds, the
processor generates a BOUND range-exceeded exception (#BR).

The bounds of an array, consisting of two words or doublewords containing the lower
and upper limits of the array, usually reside in a data structure just before the array
itself, making the limits addressable through a constant offset from the beginning of
the array. With the address of the array in a register, this practice reduces the number
of bus cycles required to determine the effective address of the array bounds.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Test whether a 16-bit array index is within the bounds specified
BOUND reg16, mem16&mem16 62 /r by the two 16-bit values in mem16&mem16.
(Invalid in 64-bit mode.)

Test whether a 32-bit array index is within the bounds specified
BOUND reg32, mem32&mem32 62 /r by the two 32-bit values in mem32&mem32.
(Invalid in 64-bit mode.)

Related Instructions
INT, INT3, INTO
rFLAGS Affected

None

72 BOUND

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Bound range, #BR X X X The bound range was exceeded.
Invalid opcode, #UD | X X X The source operand was a register.

X Instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit
General protection, X X X A memory address exceeded a data segment limit.
#GP

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

BOUND

73

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

BSF Bit Scan Forward

Searches the value in a register or a memory location (second operand) for the least-
significant set bit. If a set bit is found, the instruction clears the zero flag (ZF) and
stores the index of the least-significant set bit in a destination register (first operand).
If the second operand contains 0, the instruction sets ZF to 1 and does not change the
contents of the destination register. The bit index is an unsigned offset from bit 0 of
the searched value.

Mnemonic Opcode Description
BSF reg16, reg/mem16 OF BC/r Bit scan forward on the contents of reg/mem16.
BSF reg32, reg/mem32 OFBC/r Bit scan forward on the contents of reg/mem32.
BSF reg64, reg/mem64 OF BC/r Bit scan forward on the contents of req/mem64

Related Instructions
BSR

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U u | ™M U U U

21 [20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.

74 BSF

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

BSF

75

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

BSR Bit Scan Reverse

Searches the value in a register or a memory location (second operand) for the most-
significant set bit. If a set bit is found, the instruction clears the zero flag (ZF) and
stores the index of the most-significant set bit in a destination register (first operand).
If the second operand contains 0, the instruction sets ZF to 1 and does not change the
contents of the destination register. The bit index is an unsigned offset from bit 0 of
the searched value.

Mnemonic Opcode Description
BSR regi6, reg/mem16 OF BD /r Bit scan reverse on the contents of reg/mem16.
BSR reg32, reg/mem32 OFBD/r Bit scan reverse on the contents of reg/mem32.
BSR reg64, reg/mem64 OF BD /r Bit scan reverse on the contents of reg/mem64.

Related Instructions
BSF

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U u | ™ U U U

21 [20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-

canonical.
General protection, X X X A memory address exceeded the data segment limit or was non-
#GP canonical.

X A null data segment was used to reference memory.

76 BSR

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

BSR

77

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

BSWAP Byte Swap

Reverses the byte order of the specified register. This action converts the contents of
the register from little endian to big endian or vice versa. In a doubleword, bits 7-0 are
exchanged with bits 31-24, and bits 15-8 are exchanged with bits 23-16. In a
quadword, bits 7-0 are exchanged with bits 63-56, bits 15-8 with bits 55-48, bits 23-16
with bits 47-40, and bits 31-24 with bits 39-32. A subsequent use of the BSWAP
instruction with the same operand restores the original value of the operand.

The result of applying the BSWAP instruction to a 16-bit register is undefined. To swap
the bytes of a 16-bit register, use the XCHG instruction and specify the respective byte
halves of the 16-bit register as the two operands. For example, to swap the bytes of AX,
use XCHG AL, AH.

Mnemonic Opcode Description
BSWAP reg32 OF C8 +rd Reverse the byte order of reg32.
BSWAP reg64 OF C8 +rg Reverse the byte order of reg64.

Related Instructions
XCHG

rFLAGS Affected
None

Exceptions

None

78 BSWAP

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

BT Bit Test

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 _ 1 if the operand size is
64, 231 to +231 — 1, if the operand size is 32, and 215 t0 4215~ 1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending on operand size.

When the instruction attempts to copy a bit from memory, it accesses 2, 4, or 8 bytes
starting from the specified memory address for 16-bit, 32-bit, or 64-bit operand sizes,
respectively, using the following formula:

Effective Address + (NumBytes; * (BitOffset DIV NumBits;xg))

When using this bit addressing mechanism, avoid referencing areas of memory close
to address space holes, such as references to memory-mapped I/0 registers. Instead,
use a MOV instruction to load a register from such an address and use a register form
of the BT instruction to manipulate the data.

Mnemonic Opcode Description
BT reg/mem]i6, reqi6 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reqg/mem32, reg32 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem64, reg64 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem16, imm8 OF BA /4 ib Copy the value of the selected bit to the carry flag.
BT req/mem32, imm8 OF BA/4ib Copy the value of the selected bit to the carry flag.
BT reg/mem64, imm8 OF BA /4 ib Copy the value of the selected bit to the carry flag.

Related Instructions

BTC, BTR, BTS

BT 79

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

80 BT

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

BTC Bit Test and Complement

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then complements (toggles) the bit in the bit string.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 _ 1 if the operand size is
64, 231 to +231 — 1, if the operand size is 32, and 215 t0 4215~ 1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending the operand size.

This instruction is useful for implementing semaphores in concurrent operating
systems. Such an application should precede this instruction with the LOCK prefix.
For details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

Copy the value of the selected bit to the carry flag, then

BIC reg/memTe, reg16 OF BB /r complement the selected bit.

Cegiens? e ooy Copyheeothesdecedi ot ot
Cregmens et oo ool el e sttt e oy g e
TC egmems oFoarip e e ke b ey g e
Cregmens? imng oFoarip oprle el e sttt e oy g e
BTC reg/mem64, imm8 OF BA/7 /b Copy the value of the selected bit to the carry flag, then

complement the selected bit.

Related Instructions

BT, BTR, BTS

BTC 81

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

82 BTC

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

BTR Bit Test and Reset

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then clears the bit in the bit string to 0.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 1 if the operand size is
64, 231 to +231 — 1, if the operand size is 32, and 215 t0 4215~ 1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating
systems. Such applications should precede this instruction with the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
Copy the value of the selected bit to the carry flag, then clear the
BTR reg/mem16, reg16 OF B3 /r selected bit
Copy the value of the selected bit to the carry flag, then clear the
BTR reg/mem32, reg32 OF B3 /r celected bit.
Copy the value of the selected bit to the carry flag, then clear the
BTR reg/mem64, reg64 OF B3 /r selected bit
BIR reg/mem6, imm8 OF BA /6 ib Copy the value of the selected bit to the carry flag, then clear the
selected bit.
BIR reg/mem32, imm8 OF BA/6ib Copy the value of the selected bit to the carry flag, then clear the
selected bit.
BIR reg/memé4, imme OF BA /6 ib Copy the value of the selected bit to the carry flag, then clear the

selected bit.

Related Instructions

BT, BTC, BTS

BTR 83

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

84 BTR

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

BTS Bit Test and Set

Copies a bit, specified by bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then sets the bit in the bit string to 1.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 1 if the operand size is
64, 231 to +231 — 1, if the operand size is 32, and 215 t0 4215~ 1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating
systems. Such applications should precede this instruction with the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
BTS reg/memT6, reg16 OF AB /i SCQEZtéZeb\{Elue of the selected bit to the carry flag, then set the
BTS req/mem32, reg32 OF AB /r SCé)ngtéZeb\ﬁlue of the selected bit to the carry flag, then set the
BTS req/memé64, reg64 OF AB /r SC;)IEZtg(ljeb\{slue of the selected bit to the carry flag, then set the
BTS reg/mem|6, imm8 OF BA/5 /b SCé)‘théZeb\ﬁlue of the selected bit to the carry flag, then set the
BTS req/mem32, imm8 OF BA /5 /b sCeciEZtéZeb\i/slue of the selected bit to the carry flag, then set the
BTS reg/meme64, imme8 OF BA/5 b Copy the value of the selected bit to the carry flag, then set the

selected bit.

Related Instructions

BT, BTC, BTR

BTS 85

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

86 BTS

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CALL (Near) Near Procedure Call

Pushes the offset of the next instruction onto the stack and branches to the target
address, which contains the first instruction of the called procedure. The target
operand can specify a register, a memory location, or a label. A procedure accessed by
anear CALL is located in the same code segment as the CALL instruction.

If the CALL target is specified by a register or memory location, then a 16-, 32-, or 64-
bit rIP is read from the operand, depending on the operand size. A 16- or 32-bit rIP is
zero-extended to 64 bits.

If the CALL target is specified by a displacement, the signed displacement is added to
the rIP (of the following instruction), and the result is truncated to 16, 32, or 64 bits,
depending on the operand size. The signed displacement is 16 or 32 bits, depending on
the operand size.

In all cases, the rIP of the instruction after the CALL is pushed on the stack, and the
size of the stack push (16, 32, or 64 bits) depends on the operand size of the CALL
instruction.

For near calls in 64-bit mode, the operand size defaults to 64 bits. The E8 opcode
results in RIP = RIP + 32-bit signed displacement and the FF /2 opcode results in
RIP = 64-bit offset from register or memory. No prefix is available to encode a 32-bit
operand size in 64-bit mode.

At the end of the called procedure, RET is used to return control to the instruction
following the original CALL. When RET is executed, the rIP is popped off the stack,
which returns control to the instruction after the CALL.

See CALL (Far) for information on far calls—calls to procedures located outside of the
current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
CALL rel760ff E8 i Near call with the target specified by a 16-bit relative
displacement.
CALL rel320ff E8id Near call with the target specified by a 32-bit relative
displacement.
CALL reg/memi16 FF /2 Near call with the target specified by req/mem16.

CALL (Near) 87

AMDA

AMDG64 Technology

Mnemonic
CALL reg/mem32

CALL reg/memé64

Opcode
FF /2

FF /2

24594 Rev. 3.10 February 2005

Description

Near call with the target specified by reg/mem32. (There is no
prefix for encoding this in 64-bit mode.)

Near call with the target specified by reg/mem64.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Related Instructions

CALL(Far), RET(Near), RET(Far)

rFLAGS Affected
None.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X X X The target offset exceeded the code segment limit or was non-canon-
ical.
X A null data segment was used to reference memory.
Alignment Check, X X An unaligned memory reference was performed while alignment
#AC checking was enabled.
Page Fault, #PF X X A page fault resulted from the execution of the instruction.

88

CALL (Near)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CALL (Far) Far Procedure Call

Pushes procedure linking information onto the stack and branches to the target
address, which contains the first instruction of the called procedure. The operand
specifies a target selector and offset.

The instruction can specify the target directly, by including the far pointer in the
CALL (Far) opcode itself, or indirectly, by referencing a far pointer in memory. In 64-
bit mode, only indirect far calls are allowed, executing a direct far call (opcode 9A)
generates an undefined opcode exception.

The target selector used by the instruction can be a code selector in all modes.
Additionally, the target selector can reference a call gate in protected mode, or a task
gate or TSS selector in legacy protected mode.

m Target is a code selector—The CS:rIP of the next instruction is pushed to the stack,
using operand-size stack pushes. Then code is executed from the target CS:rIP. In
this case, the target offset can only be a 16- or 32-bit value, depending on operand-
size, and is zero-extended to 64 bits. No CPL change is allowed.

m Target is a call gate—The call gate specifies the actual target code segment and off-
set. Call gates allow calls to the same or more privileged code. If the target seg-
ment is at the same CPL as the current code segment, the CS:rIP of the next
instruction is pushed to the stack.

If the CALL (Far) changes privilege level, then a stack-switch occurs, using an
inner-level stack pointer from the TSS. The CS:rIP of the next instruction is
pushed to the new stack. If the mode is legacy mode and the param-count field in
the call gate is non-zero, then up to 31 operands are copied from the caller's stack
to the new stack. Finally, the caller's SS:rSP is pushed to the new stack.

When calling through a call gate, the stack pushes are 16-, 32-, or 64-bits, depend-
ing on the size of the call gate. The size of the target rIP is also 16, 32, or 64 bits,
depending on the size of the call gate. If the target rIP is less than 64 bits, it is
zero-extended to 64 bits. Long mode only allows 64-bit call gates that must point to
64-bit code segments.

m Target is a task gate or a TSS—If the mode is legacy protected mode, then a task
switch occurs. See “Hardware Task-Management in Legacy Mode” in volume 2 for
details about task switches. Hardware task switches are not supported in long
mode.

See CALL (Near) for information on near calls—calls to procedures located inside the
current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

CALL (Far) 89

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
CALL FAR pntr6-76 9A od Far call direct, with the target specified by a far pointer contained

in the instruction. (Invalid in 64-bit mode.)

Far call direct, with the target specified by a far pointer contained

CALLFAR pntr16:32 s in the instruction. (Invalid in 64-bit mode.)

CALL FAR memT6:16 FF /3 E?g r;a(llnllndlrect, with the target specified by a far pointer in

CALL FAR mem16:32 FF/3 E%§3$M&tmmﬂwm@mwammbyﬂmpmmam
Action

// See “Pseudocode Definitions” on page 49.
CALLF_START:

IF (REAL_MODE)
CALLF_REAL_OR_VIRTUAL

ELSIF (PROTECTED_MODE)
CALLF_PROTECTED

ELSE // (VIRTUAL_MODE)
CALLF_REAL_OR_VIRTUAL

CALLF_REAL_OR_VIRTUAL:
IF (OPCODE = callf [mem]) // CALLF Indirect
{

temp_RIP = READ_MEM.z [mem]
temp_CS = READ_MEM.w [mem+/7]
}
ELSE // (OPCODE = callf direct)
{

temp_RIP = z-sized offset specified in the instruction
zero-extended to 64 bits
temp_CS = selector specified in the instruction
}

PUSH.v 01d_CS
PUSH.v next_RIP

IF (temp_RIP>CS.Timit)
EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4
RIP = temp_RIP

EXIT

90 CALL (Far)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CALLF_PROTECTED:
IF (OPCODE = callf [mem]) //CALLF Indirect
{

temp_offset = READ_MEM.z [mem]
temp_sel READ_MEM.w [mem+Z]

}
ELSE // (OPCODE
{

IF (64BIT_MODE)

EXCEPTION [#UD] // "CALLF direct’ is illegal in 64-bit mode.
temp_offset = z-sized offset specified in the instruction
zero-extended to 64 bits

temp_sel = selector specified in the instruction

}

callf direct)

temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)

IF (temp_desc.attr.type = “available_tss’)
TASK_SWITCH // Using temp_sel as the target TSS selector.
ELSIF (temp_desc.attr.type = "taskgate’)
TASK_SWITCH // Using the TSS selector in the task gate
// as the target TSS.
ELSIF (temp_desc.attr.type = ’“code’)
// 1f the selector refers to a code descriptor, then
// the offset we read is the target RIP.

temp_RIP = temp_offset
CS = temp_desc
PUSH.v ol1d_CS
PUSH.v next_RIP
IF ((!64BIT_MODE) && (temp_RIP > CS.1imit))
// temp_RIP can’t be non-canonical because
EXCEPTION [#GP(0)] // it’s a 16- or 32-bit offset, zero-extended
// to 64 bits.
RIP = temp_RIP
EXIT
}
ELSE // (temp_desc.attr.type = ’callgate’)
// If the selector refers to a call gate, then
// the target CS and RIP both come from the call gate.

IF (LONG_MODE)
// The size of the gate controls the size of the stack pushes.
V=8-byte
// Long mode only uses 64-bit call gates, force 8-byte opsize.
ELSIF (temp_desc.attr.type = ’callgate3?’)
V=4-byte
// lLegacy mode, using a 32-bit call-gate, force 4-byte opsize.

CALL (Far) 91

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005

ELSE // (temp_desc.attr.type = "callgatel6’)
V=2-byte
// lLegacy mode, using a 16-bit call-gate, force 2-byte opsize.

temp_RIP = temp_desc.offset

IF (LONG_MODE) // In long mode, we need to read the 2nd half of a
// 16-byte call-gate from the GDT/LDT, to get the upper
// 32 bits of the target RIP.

temp_upper = READ_MEM.q [temp_sel+8]
IF (temp_upper’s extended attribute bits != 0)
EXCEPTION [#GP(temp_sel)]
temp_RIP = tempRIP + (temp_upper SHL 32)
// Concatenate both halves of RIP
}

CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)

IF (CS.attr.conforming=1)
temp_CPL = CPL

ELSE
temp_CPL = CS.attr.dpl

IF (CPL=temp_CPL)

{
PUSH.v 01d_CS
PUSH.v next_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))

{
EXCEPTIONLH#GP(0)]

}

RIP = temp_RIP
EXIT
}
ELSE // (CPL !'= temp_CPL), Changing privilege level.
{
CPL = temp_CPL
temp_ist = 0 // Call-far doesn’t use ist pointers.
temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (CPL, temp_ist)

RSP.q = temp_RSP
SS = temp_SS_desc
PUSH.v 01d_SS // #SS on this and following pushes use

// SS.sel as error code.
PUSH.v ol1d_RSP

IF (LEGACY_MODE) // Legacy-mode call gates have
{ // a param_count field.

92

CALL (Far)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

temp_PARAM_COUNT = temp_desc.attr.param_count

FOR (I=temp_PARAM_COUNT; I>0; I--)
{
temp_DATA = READ_MEM.v [01d_SS:(ol1d_RSP+I*V)]
PUSH.v temp_DATA
}
}
PUSH.v ol1d_CS
PUSH.v next_RIP
IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))
{
EXCEPTION [#GP(0)]
}
RIP = temp_RIP
EXIT

}

Related Instructions
CALL (Near), RET (Near), RET (Far)
rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

CALL (Far) 93

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The far CALL indirect opcode (FF /3) had a register operand.
X The far CALL direct opcode (9A) was executed in 64-bit mode.

Invalid TSS, #TS X As part of a stack switch, the target stack segment selector or rSP in

(selector) the TSS was beyond the TSS limit.

X As part of a stack switch, the target stack segment selector in the TSS
was a null selector.

X As part of a stack switch, the target stack selector’s Tl bit was set, but
LDT selector was a null selector.

X As part of a stack switch, the target stack segment selector in the TSS
was beyond the limit of the GDT or LDT descriptor table.

X As part of a stack switch, the target stack segment selector in the TSS
contained a RPL that was not equal to its DPL.

X As part of a stack switch, the target stack segment selector in the TSS
contained a DPL that was not equal to the CPL of the code segment
selector.

X As part of a stack switch, the target stack segment selector in the TSS
was not a writable segment.

Segment not present, X The accessed code segment, call gate, task gate, or TSS was not

#NP (selector) present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical, and no stack switch occurred.

Stack, #SS X After a stack switch, a memory access exceeded the stack segment

(selector) limit or was non-canonical.

X As part of a stack switch, the SS register was loaded with a non-null

segment selector and the segment was marked not present.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X X X The target offset exceeded the code segment limit or was non-canon-
ical.
X A null data segment was used to reference memory.

94

CALL (Far)

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X The target code segment selector was a null selector.
#GP
(selector) X A code, call gate, task gate, or TSS descriptor exceeded the descriptor
table limit.

X A segment selector’s Tl bit was set but the LDT selector was a null
selector.

X The segment descriptor specified by the instruction was not a code
segment, task gate, call gate or available TSS in legacy mode, or not
a 64-bit code segment or a 64-bit call gate in long mode.

X The RPL of the non-conforming code segment selector specified by
the instruction was greater than the CPL, or its DPL was not equal to
the CPL.

X The DPL of the conforming code segment descriptor specified by the
instruction was greater than the CPL.

X The DPL of the callgate, taskgate, or TSS descriptor specified by the
instruction was less than the CPL, or less than its own RPL.

X The segment selector specified by the call gate or task gate was a null
selector.

X The segment descriptor specified by the call gate was not a code seg-
ment in legacy mode, or not a 64-bit code segment in long mode.

X The DPL of the segment descriptor specified by the call gate was
greater than the CPL.

X The 64-bit call gate’s extended attribute bits were not zero.

X The TSS descriptor was found in the LDT.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

CALL (Far) 95

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
CBW Convert to Sign-extended

CWDE

CDQE

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The
effect of this instruction is to convert a signed byte, word, or doubleword in the AL or
eAX register into a signed word, doubleword, or double quadword in the rAX register.
This action helps avoid overflow problems in signed number arithmetic.

The CDQE mnemonic is meaningful only in 64-bit mode.

Mnemonic Opcode Description
CBW 98 Sign-extend AL into AX.
CWDE 98 Sign-extend AX into EAX.
CDQE 98 Sign-extend EAX into RAX.

Related Instructions
CWD, CDQ, CQO
rFLAGS Affected
None

Exceptions

None

96 CBW, CWDE, CDQE

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CWD Convert to Sign-extended

cDQ

Qo0

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this
instruction is to convert a signed word, doubleword, or quadword in the rAX register

into a signed doubleword, quadword, or double-quadword in the rDX:rAX registers.
This action helps avoid overflow problems in signed number arithmetic.

The CQO mnemonic is meaningful only in 64-bit mode.

Mnemonic Opcode Description
CWD 99 Sign-extend AX into DX:AX.
(DQ 99 Sign-extend EAX into EDX:EAX.
QO 99 Sign-extend RAX into RDX:RAX.

Related Instructions
CBW, CWDE, CDQE
rFLAGS Affected
None

Exceptions

None

Cwb, €DQ, CQ0 97

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

CLC Clear Carry Flag

Clears the carry flag (CF) in the rFLAGS register to zero.

Mnemonic Opcode Description

CLC F8 Clear the carry flag (CF) to zero.

Related Instructions
STC, CMC
rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Ziz‘s 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

Exceptions

None

98 CLC

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CLD Clear Direction Flag

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each
iteration of a string instruction increments the data pointer (index registers rSI or
rDI). If the DF flag is 1, the string instruction decrements the pointer. Use the CLD
instruction before a string instruction to make the data pointer increment.

Mnemonic Opcode Description

CLD FC Clear the direction flag (DF) to zero.
Related Instructions
CMPSx, INSx, LODSx, MOVSx, OUTSx, SCASx, STD, STOSx

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: ff?/ts 31-22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

Exceptions

None

CLD 99

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

CLFLUSH Cache Line Flush

Flushes the cache line specified by the memS8 linear-address. The instruction checks
all levels of the cache hierarchy—internal caches and external caches—and
invalidates the cache line in every cache in which it is found. If a cache contains a dirty
copy of the cache line (that is, the cache line is in the modified or owned MOESI state),
the line is written back to memory before it is invalidated. The instruction sets the
cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address
operand against the processor’s write-combining buffers. If the write-combining
buffer holds data intended for that physical address, the instruction writes the entire
contents of the buffer to memory. This occurs even though the data is not cached in
the cache hierarchy. In a multiprocessor system, the instruction checks the write-
combining buffers only on the processor that executed the CLFLUSH instruction.

The CLFLUSH instruction is weakly-ordered with respect to other instructions that
operate on memory. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around a CLFLUSH
instruction. Such reordering can cause freshly-loaded cache lines to be flushed
unintentionally. The only way to avoid this situation is to use the MFENCE instruction
to force strong-ordering of the CLFLUSH instruction with respect to other memory
operations. The LFENCE, SFENCE, and serializing instructions are not ordered with
respect to CLFLUSH.

The CLFLUSH instruction behaves like a load instruction with respect to setting the
page-table accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but
does not set the page-table dirty bit.

The CLFLUSH instruction is supported if CPUID standard function 1 sets EDX bit 19.
CPUID function 1 returns the CLFLUSH size in EBX bits 23:16. This value reports the
size of a line flushed by CLFLUSH in quadwords. See CPUID for details.

The CLFLUSH instruction executes at any privilege level. CLFLUSH performs all the
segmentation and paging checks that a 1-byte read would perform, except that it also
allows references to execute-only segments.

Mnemonic Opcode Description

CFLUSH mem8 OF AE /7 flush cache line containing mem8.

100 CLFLUSH

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Related Instructions
INVD, WBINVD
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The CLFLUSH instruction is not supported, as indicated by
EDX bit 19 of CPUID standard function 1.
Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.
General protection, #GP | X X X A memory address exceeded a data segment limit or was
non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

CLFLUSH

101

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

cMC Complement Carry Flag

Complements (toggles) the carry flag (CF) bit of the rFLAGS register.

Mnemonic Opcode Description

cMC F5 Complement the carry flag (CF).

Related Instructions
CLC, STC

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M

21 | 20| 19 | 18 | 17 | 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Ziz‘s 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

Exceptions

None

102 cmc

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CMOVcc Conditional Move

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose
register (second operand) into a register (first operand), depending upon the settings
of condition flags in the rFLAGS register. If the condition is not satisfied, the
instruction has no effect.

The mnemonics of CMOVcc instructions denote the condition that must be satisfied.
Most assemblers provide instruction mnemonics with A (above) and B (below) tags to
supply the semantics for manipulating unsigned integers. Those with G (greater than)
and L (less than) tags deal with signed integers. Many opcodes may be represented by
synonymous mnemonics. For example, the CMOVL instruction is synonymous with the
CMOVNGE instruction and denote the instruction with the opcode OF 4C.

Support for CMOVcc instructions depends on the processor implementation. To
determine whether a processor can perform CMOVcc instructions, use the CPUID
instruction to determine whether EDX bit 15 of CPUID standard function 1 or
extended function 8000 _0001h is set to 1.

Mnemonic Opcode Description

CMOVO regi6, reg/memi6
CMOVO reg32, reg/mem32 OF 40/r Move if overflow (OF = 1).
CMOVO reg64, reg/mem64

CMOVNO reg16, reg/memI16
CMOVNO reg32, reg/mem32 OF 41 /r Move if not overflow (OF = 0).
CMOVNO reg64, reg/mem64

CMOVB reg16, reg/memi6
CMOVB reg32, reg/mem32 OF 42 /r Move if below (CF =1).
CMOVB reg64, reg/mem64

CMOQVC regi6, reg/mem1i6
CMOQVC reg32, reg/mem32 OF 42 /r Move if carry (CF=1).
CMOQVC reg64, reg/mem64

CMOVNAE reg 16, reg/mem16
CMOVNAE reg32, reg/mem32 OF 42 /r Move if not above or equal (CF =1).
CMOVNAE reg64, reg/mem64

CMOVNB regi6,reg/memi6
CMOVNB reg32,reg/mem32 OF 43 /r Move if not below (CF = 0).
CMOVNB reg64,reg/mem64

CMOVcc 103

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Mnemonic Opcode Description

CMOVNC regi6,reg/mem1i6
CMOVNC reg32,reg/mem32 OF 43 /r Move if not carry (CF = 0).
CMOVNC reg64,reg/mem64

CMOVAE reg 16, reg/mem1i6
CMOVAE reg32, reg/mem32 OF 43 /r Move if above or equal (CF =0).
CMOVAE reg64, reg/mem64

CMOQVZ regi6, reg/mem16
CMOQVZ reg32, req/mem32 OF 44 /r Move if zero (ZF =1).
CMOQVZ reg64, req/mem64

CMOVE regi6, reg/mem16
CMOVE reg32, reg/mem32 OF 44 /r Move if equal (ZF =1).
CMOVE reg64, reg/memé64

CMOVNZ reg16, reg/mem16
CMOVNZ reg32, reg/mem32 OF 45 /r Move if not zero (ZF = 0).
CMOVNZ reg64, reg/mem64

CMOVNE reg16, reg/memI16
CMOVNE reg32, req/mem32 OF 45 /r Move if not equal (ZF = 0).
CMOVNE reg64, reg/mem64

CMOVBE reg1i6, reg/mem16
CMOVBE reg32, reqg/mem32 OF 46 /r Move if below or equal (CF=1orZF=1).
CMOVBE reg64, reg/mem64

CMOVNA reg 16, reg/mem1i6
CMOVNA reg32, reg/mem32 OF 46 /r Move if not above (CF=1orZF=1).
CMOVNA reg64, reg/memé64

CMOVNBE reg 16, reg/mem1i6
CMOVNBE reg32,reqg/mem32 OF 47 /r Move if not below or equal (CF =0 and ZF = 0).
CMOVNBE reg64,req/mem64

CMOVA reg16, reg/mem16
CMOVA reg32, reg/mem32 OF 47 /r Move if above (CF =1 and ZF =0).
CMOVA reg64, reg/mem64

CMOVS regi6, reg/mem 16
CMOQVS reg32, reg/mem32 OF 48 /r Move if sign (SF =1).
CMOQVS reg64, reg/mem64

CMOVNS reg16, reg/memI16
CMOVNS reg32, req/mem32 OF 49 /r Move if not sign (SF =0).
CMOVNS reg64, reg/mem64

CMOVP regi6, reg/mem16
CMOVP reg32, reg/mem32 OF 4A/r Move if parity (PF=1).
CMOVP reg64, reg/mem64

104 CMOVcc

AMDA

24594 Rev. 3.10 February 2005

Mnemonic

CMOVPE regi6, reg/mem16
CMOVPE reg32, reg/mem32
CMOVPE reg64, req/mem64

CMOVNP reg16, reg/memi6
CMOVNP reg32, reg/mem32
CMOVNP reg64, reg/memé64

CMOVPO regi6, reg/mem1i6
CMOVPO reg32, reg/mem32
CMOQVPO reg64, reg/mem64

CMOVL regi6, reg/mem1i6
CMOVL reg32, reg/mem32
CMOVL reg64, reg/memé64

CMOVNGE reg16, reg/memi6
CMOVNGE reg32, reg/mem32
CMOVNGE reg64, reg/mem64

CMOVNL reg 16, reg/mem16
CMOVNL reg32, reg/mem32
CMOVNL reg64, reg/mem64

CMOVGE regi6, reg/mem16
CMOVGE reg32, req/mem32
CMOVGE reg64, reg/memé64

CMOVLE reg16, reg/mem16
CMOVLE reg32, reg/mem32
CMOVLE reg64, reg/mem64

CMOVNG regi6, reg/mem16
CMOVNG reg32, reg/mem32
CMOVNG reg64, req/mem64

CMOVNLE reg16, reg/memi6
CMOVNLE reg32, reg/mem32
CMOVNLE reg64, reg/memé64

CMOVG regi6, reg/mem1i6
CMOVG reg32, reg/mem32
CMOVG reg64, reg/mem64

Related Instructions
MOV
rFLAGS Affected

None

Opcode

OF 4A /r

OF 4B /r

OF 4B /r

OF 4C/r

OF 4C/r

OF 4D /r

OF 4D /r

OF 4E/r

OF 4E/r

OF 4F /r

OF 4F /r

AMDG64 Technology

Description

Move if parity even (PF =1).

Move if not parity (PF =0).

Move if parity odd (PF = 0).

Move if less (SF <> OF).

Move if not greater or equal (SF <> OF).

Move if not less (SF = OF).

Move if greater or equal (SF = OF).

Move if less or equal (ZF =1 or SF <> OF).

Move if not greater (ZF =1 or SF <> OF).

Move if not less or equal (ZF = 0 and SF = OF).

Move if greater (ZF =0 and SF = OF).

CMOVcc 105

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The CMOVcc instruction is not supported, as indicated by EDX bit 15
of CPUID standard function 1 or extended function 8000_0001 h.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

106

CMOVcc

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CMP Compare

Compares the contents of a register or memory location (first operand) with an
immediate value or the contents of a register or memory location (second operand),
and sets or clears the status flags in the rFLAGS register to reflect the results. To
perform the comparison, the instruction subtracts the second operand from the first
operand and sets the status flags in the same manner as the SUB instruction, but does
not alter the first operand. If the second operand is an immediate value, the
instruction sign-extends the value to the length of the first operand.

Use the CMP instruction to set the condition codes for a subsequent conditional jump
(Jcc), conditional move (CMOVcc), or conditional SETcc instruction. Appendix E,
“Instruction Effects on RFLAGS,” shows how instructions affect the rFLAGS status
flags.

Mnemonic Opcode Description

CMP AL imm8 3C b Compare an 8-bit immediate value with the contents of the AL
register.

CMP AX, imm 6 3D jw Compare a 16-bit immediate value with the contents of the AX
register.

CMP EAX, imm32 3D id Compare a 32-bit immediate value with the contents of the EAX
register.

CMP RAX, imm32 30 id Compare a 32-bit immediate value with the contents of the RAX
register.

CMP reg/mem, imms 80/71b Compare an 8-bit immediate value with the contents of an 8-bit
register or memory operand.

, - Compare a 16-bit immediate value with the contents of a 16-bit

CMP reg/mem 16, imm 16 81/17iw register or memory operand.

CMP reg/mem32, imm32 81 /7id Compare a 32-bit immediate value with the contents of a 32-bit
register or memory operand.

- - Compare a 32-bit signed immediate value with the contents of a

CMP reg/memo4, imm32 81/7id 64-bit register or memory operand.

CMP reg/mem6, immé 83 /71b Compare an 8-bit signed immediate value with the contents of a
16-bit register or memory operand.

CMP reg/mem32, imme 83 /71b Compare an 8-bit signed immediate value with the contents of a

32-bit register or memory operand.

cmpP 107

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005

Mnemonic Opcode Description
CMP reg/mem64, immé 83 /71b gg_rgiliz:;eg ii?e?_obrit r;leg;%?;rg;(?srl%te value with the contents of a
Cupregiens, s sop ot cnterso o cgter o memon e
P egmenis e oy Compne e s s o gt ey pen
OWegnens g sep e ooy S cgser o memon cpern
pegmensigss s o ecares g gt g o memony e
CMP reg8, reg/mems Y g%r;gpr)ggsigf grorr]lqtg;:z rcc‘ ggeSrat;:Ei 'register with the contents of an
CMP reg16, reg/mem16 3B %—E??ééig;cc)ornr:qegr?oor; ao;)i_gi; (;(.egister with the contents of a
CMP reg32, reg/mem32 3B/ gg_ngipt)?geg itsftlgrcgrnaigﬁ grfyaozpze_rzi; (rj'egister with the contents of a
CMP reg64, reg/meme4 3B Compare the contents of a 64-bit register with the contents of a

64-bit register or memory operand.

When interpreting operands as unsigned, flag settings are as follows:

Operands CF IF
dest > source 0 0
dest = source 0 1
dest <source 1 0

When interpreting operands as signed, flag settings are as follows:

Operands OF IF
dest > source SF 0
dest = source 0 1
dest < source NOT SF 0
108 cmpP

AMDA

24594 Rev. 3.10 February 2005

Related Instructions

SUB, CMPSx, SCASx

AMDG64 Technology

rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Note: ff?iz‘s 31-22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

cmp 109

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

CMPS Compare Strings
CMPSB

CMPSW

CMPSD

CMPSQ

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI
registers, sets or clears the status flags of the rFLAGS register to reflect the results,
and then increments or decrements the rSI and rDI registers according to the state of
the DF flag in the rFLAGS register. To perform the comparison, the instruction
subtracts the second operand from the first operand and sets the status flags in the
same manner as the SUB instruction, but does not alter the first operand. The two
operands must be the same size.

If the DF flag is 0, the instruction increments rSI and rDI; otherwise, it decrements the
pointers. It increments or decrements the pointers by 1, 2, 4, or 8, depending on the
size of the operands.

The forms of the CMPSx instruction with explicit operands address the first operand
at seg:[rSI]. The value of seg defaults to the DS segment, but may be overridden by a
segment prefix. These instructions always address the second operand at ES:[rDI]. ES
may not be overridden. The explicit operands serve only to specify the type (size) of
the values being compared and the segment used by the first operand.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to
point to the values to be compared. The mnemonic determines the size of the
operands.

Do not confuse this CMPSD instruction with the same-mnemonic CMPSD (compare
scalar double-precision floating-point) instruction in the 128-bit media instruction set.
Assemblers can distinguish the instructions by the number and type of operands.

For block comparisons, the CMPS instruction supports the REPE or REPZ prefixes
(they are synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For
details about the REP prefixes, see “Repeat Prefixes” on page 10. If a conditional
jump instruction like JL follows a CMPSx instruction, the jump occurs if the value of
the seg:[rSI] operand is less than the ES:[rDI] operand. This action allows
lexicographical comparisons of string or array elements. A CMPSx instruction can
also operate inside a loop controlled by the LOOPcc instruction.

110 CMPS

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Mnemonic Opcode Description

Compare the byte at DS:rSI with the byte at ES:rDI and then

CMPS mem, mems A6 increment or decrement Sl and rDI.

CMPS mem16. mem 16 A7 Compare the word at DS:rSI with the word at ES:rDI and then
increment or decrement rSl and rDI.
Compare the doubleword at DS:rSI with the doubleword at

CMPS mem32, mems32 A7 ES:rDI and then increment or decrement rSI and rDI.

CMPS memé64, memé4 A7 Compare the quadword at DS:rSI with the quadword at ES:rDI
and then increment or decrement rSI and rDI.
Compare the byte at DS:rSI with the byte at ES:rDI and then

CMPSB A6 increment or decrement Sl and rDI.

CMPSW A7 Compare the word at DS:rSI with the word at ES:rDI and then
increment or decrement rSl and rDI.

CMPSD A7 Compare the doubleword at DS:rSI with the doubleword at
ES:rDI and then increment or decrement rSI and rDI.

CMPSQ A7 Compare the quadword at DS:rSI with the quadword at ES:rDI

and then increment or decrement rSl and rDI.

Related Instructions

CMP, SCASx

CMPSQ 111

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

112 CMPSQ

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CMPXCHG Compare and Exchange

Compares the value in the AL, AX, EAX, or RAX register with the value in a register
or a memory location (first operand). If the two values are equal, the instruction
copies the value in the second operand to the first operand and sets the ZF flag in the
rFLAGS register to 1. Otherwise, it copies the value in the first operand to the AL, AX,
EAX, or RAX register and clears the ZF flag to 0.

The OF, SF, AF, PF, and CF flags are set to reflect the results of the compare.

The forms of the CMPXCHG instruction that write to memory support the LOCK
prefix. For details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

Compare AL register with an 8-bit register or memory location. If
CMPXCHG reg/mem8, reg8 OF BO/r equal, copy the second operand to the first operand. Otherwise,
copy the first operand to AL.

Compare AX register with a 16-bit register or memory location. If
CMPXCHG reg/mem16, regi6 OF B1 /r equal, copy the second operand to the first operand. Otherwise,
copy the first operand to AX.

Compare EAX register with a 32-bit register or memory location.
CMPXCHG reg/mem32, reg32 OF B1 /r If equal, copy the second operand to the first operand.
Otherwise, copy the first operand to EAX.

Compare RAX register with a 64-bit register or memory location.
CMPXCHG reg/memé64, reg64 OF B1 /r If equal, copy the second operand to the first operand.
Otherwise, copy the first operand to RAX.

Related Instructions

CMPXCHGS8B, CMPXCHG16B

CMPXCHG 113

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

114 CMPXCHG

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
CMPXCHGSB Compare and Exchange Eight Bytes
CMPXCHG16B Compare and Exchange Sixteen Bytes

Compares the value in the rDX:rAX registers with a 64-bit or 128-bit value in the
specified memory location. If the values are equal, the instruction copies the value in
the rCX:rBX registers to the memory location and sets the zero flag (ZF) of the
rFLAGS register to 1. Otherwise, it copies the value in memory to the rDX:rAX
registers and clears ZF to 0.

If the effective operand size is 16-bit or 32-bit, the CMPXCHGSB instruction is used.
This instruction uses the EDX:EAX and ECX:EBX register operands and a 64-bit
memory operand. If the effective operand size is 64-bit, the CMPXCHG16B
instruction is used; this instruction uses RDX:RAX and RCX:RBX register operands
and a 128-bit memory operand.

The CMPXCHGS8B and CMPXCHG16B instructions support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Support for the CMPXCHGS8B and CMPXCHG16B instructions depends on the
processor implementation. To find out if a processor can execute the CMPXCHGS8B
instruction, use the CPUID instruction to determine whether EDX bit 8 of CPUID
standard function 1 or extended function 8000 _0001h is set to 1. To find out if a
processor can execute the CMPXCHG16B instruction, use the CPUID instruction to
determine whether ECX bit 13 of CPUID standard function 1 is set to 1.

The memory operand used by CMPXCHG16B must be 16-byte aligned or else a
general-protection exception is generated.

Mnemonic Opcode Description

Compare EDX:EAX register to 64-bit memory location. If equal,
set the zero flag (ZF) to 1 and copy the ECX:EBX register to the

CMPXCHG8B memé64 OF C7 /1 mé64 : . .
memory location. Otherwise, copy the memory location to
EDX:EAX and clear the zero flag.
Compare RDX:RAX register to 128-bit memory location. If equal,
CMPXCHG16B mem 128 OF C7 /1 mi28 set the zero flag (ZF) to 1 and copy the RCX:RBX register to the

memory location. Otherwise, copy the memory location to
RDX:RAX and clear the zero flag.

Related Instructions

CMPXCHG

CMPXCHG8/16B 115

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The CMPXCHGS8B instruction is not supported, as indicated by EDX
bit 8 of CPUID standard function 1 or extended function 8000_0001h.
X The CMPXCHG16B instruction is not supported, as indicated by ECX
bit 13 of CPUID standard function 1.
X X X The operand was a register.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
X The memory operand for CMPXCHG16B was not aligned on a 16-byte
boundary
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

116 CMPXCHG8/16B

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

CPUID Processor Identification

Provides information about the processor and its capabilities through a number of
different functions. Software should load the number of the CPUID function to
execute into the EAX register before executing the CPUID instruction. The processor
returns information in the EAX, EBX, ECX, and EDX registers; the contents and
format of these registers depend on the function.

The architecture supports CPUID information about standard functions and extended
functions. The standard functions have numbers in the 0000_xxxxh series (for
example, standard function 1). To determine the largest standard function number
that a processor supports, execute CPUID function 0.

The extended functions have numbers in the 8000_xxxxh series (for example,
extended function 8000_0001h). To determine the largest extended function number
that a processor supports, execute CPUID extended function 8000_0000h. If the value
returned in EAX is greater than 8000_0000h, the processor supports extended
functions.

Software operating at any privilege level can execute the CPUID instruction to collect
this information. In 64-bit mode, this instruction works the same as in legacy mode
except that it zero-extends 32-bit register results to 64 bits.

CPUID is a serializing instruction.

Mnemonic Opcode Description
Returns information about the processor and its capabilities. EAX
CPUID OF A2 specifies the function number, and the data is returned in EAX,
EBX, ECX, EDX.
Testing for the CPUID
Instruction

To avoid an invalid-opcode exception (#UD) on those processor implementations that
do not support the CPUID instruction, software must first test to determine if the
CPUID instruction is supported. Support for the CPUID instruction is indicated by the
ability to write the ID bit in the rFLAGS register. Normally, 32-bit software uses the
PUSHFD and POPFD instructions in an attempt to write rFLAGS.ID. After reading
the updated rFLAGS.ID bit, a comparison determines if the operation changed its
value. If the value changed, the processor executing the code supports the CPUID

CPUID 117

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

instruction. If the value did not change, rFLAGS.ID is not writable, and the processor
does not support the CPUID instruction.

The following code sample shows how to test for the presence of the CPUID
instruction using 32-bit code.

pushfd ; save EFLAGS

pop eax ; store EFLAGS in EAX

mov ebx, eax ; save in EBX for later testing
Xxor eax, 00200000h ; toggle bit 21

push eax ; push to stack

popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS

pop eax ; store EFLAGS in EAX

cmp eax, ebx ; see if bit 21 has changed
Jz NO_CPUID ; 1f no change, no CPUID
Standard Function 0:

Processor Vendor and

Largest Standard

Function Number

All software using the CPUID instruction must execute standard function 0. This
function returns the largest standard function number and the processor vendor.

Standard Function 0 EAX: Largest Standard Function Number. Standard function 0 loads EAX
with the largest CPUID standard function number supported by the processor
implementation.

Standard Function 0 EBX, EDX, and ECX: Processor Vendor. Standard function 0 loads a
12-character string into the EBX, EDX, and ECX registers identifying the processor
vendor. For AMD processors, the string is AuthenticAMD. This string informs software
that it should follow the AMD CPUID definition for subsequent CPUID function calls.
If the function returns a another vendor’s string, software must use that vendor’s
CPUID definition when interpreting the results of subsequent CPUID function calls.
Table 3-1 shows the contents of the EBX, EDX, and ECX registers after executing
function 0 on an AMD processor.

Table 3-1. Processor Vendor Return Values

Register Return Value ASCII Characters
EBX 6874_7541h “h t uA”
EDX 6974_6E65h “i tne”
ECX 444D_4163h “DMAC”

118 CPUID

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Standard Function 1:
Processor Signature
and Standard
Features

Standard Function 1 returns the processor signature and standard-feature bits.

0000_0001h EAX: Processor Signature. Function 1 returns the processor signature in the
EAX register; the signature provides information on the processor revision (stepping)
level and processor model, as well as the instruction family that the processor
supports.

Figure 3-1 shows the format of the EAX register following execution of CPUID
standard function 1.

31 28 27 20 19 16 15 12 11 8 7 4 3 0
Reserved Extended Family Extended Model Reserved Family Model Stepping

Bits Mnemonic Description

31-28 Reserved

27-20 Extended Family

19-16 Extended Model

15-12 Reserved

11-8 Family

-4 Model

3-0 Stepping

Figure 3-1. Standard Function 1 EAX : Processor Signature (EAX Register)

The extended family and extended model fields extend the family and model fields,
respectively, to accommodate larger family and model values. The method for
computing the actual—or effective—family and model depends on the value of the
family field. The method for computing the effective family is shown in Table 3-2.

CPUID 119

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Table 3-2. Effective Family Computation

Family Field How to Compute the Effective Family Example

Extended Family
Lolofofofofo]r]o]

7 0
_— Family
Add the extended family field and the zero-
Fh extended family field. + nnnn

Effective Family
Lofofof1]ofofo]r1]
7

0 513-329.eps

Family
3 0
Less than Fh Use the family field as the effective family. 1

Effective Family

3 0 5i3330eps

The method for computing the effective model is shown in Table 3-3 on page 121.

120 CPUID

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Table 3-3. Effective Model Computation

Family Field How to Compute the Effective Model Example

Extended Model
of1]ofo
3 0

o Shift the extended model field four bits to the Model

left and add it to the model field. + [ofo]1]o]
3 0

Effective Model
loft]ofofofof1]o]
7

0 513-331.eps

Less than Fh Use the model field as the effective model. l
Effective Model

3 0 513332eps

Standard Function 1 EBX: Initial APIC ID, Logical Processor Count, CLFLUSH Size, and 8-Bit Brand ID.

CPUID standard function 1 returns information on the initial value of the physical ID
register associated with the advanced programmable interrupt controller (APIC), the

logical processor count, the size of the cache line flushed by the CLFLUSH
instruction, and the processor brand.

Figure 3-2 shows the format of the EBX register following execution of CPUID
standard function 1.

31 24 23 16 15 8 7 0
Initial APIC ID Logical Processor Count CLFLUSH Size 8-Bit Brand ID

Bits Mnemonic Description

31-24 Initial APIC 1D

23-16 Logical Processor Count

15-8 CLFLUSH Size

7-0 8-Bit Brand ID

Figure 3-2. Standard Function 1 EBX: Initial APIC ID, Logical Processor Count, CLFLUSH Size,
and 8-Bit Brand ID (EBX Register)

CPUID 121

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Initial APICID. This field contains the initial value of the processor’s local APIC
physical ID register. This value is composed of the Northbridge NodelD (bits 26-24)
and the CPU number within the node (bits 31-27). Subsequent writes by software to
the local APIC physical ID register do not change the value of the initial APIC ID
field.

Logical Processor Count. The interpretation of the value in the logical processor count
field depends on the value of the core multiprocessing legacy (CMP legacy) bit (ECX
bit 1) returned by CPUID extended function 8000_0001h (See Table 3-6). If the value
of the CMP legacy bit is 0, then the value returned for the HTT bit (standard function
1, EDX bit 28) (see Table 3-5) indicates the presence of hyperthreading and the value
of the logical processor count field indicates the number of threads for each core on a
package. If the value of the CMP legacy bit is 1, then the value of the HTT bit
indicates the presence of multiple cores per package and the value of the logical
processor count field indicates the number of cores per package.

The logical processor count field is reserved (RAZ) if the HTT bit is 0.

The CMP legacy bit can be set for multiple core processors that do not support
hyperthreading. This allows software to detect multiple cores as if they were multiple
threads. This method of detecting multiple cores is discouraged; where possible, new
software should use should use extended function 8000 _0008h to return the number of
cores per package in ECX][7:0].

CLFLUSH Size. This field specifies the size (in quadwords) of the cache line that is
flushed by the CLFLUSH instruction. This field is implemented only if the CLFLUSH
instruction is supported. To determine if the CLFLUSH instruction is supported, test
the CLFLUSH instruction bit provided by function 1 feature flags.

8-bit Brand ID. The 8-bit brand ID field identifies some AMD64 processors with a
unique set of features as a specific brand. The BIOS uses the 8-bit brand ID field to
program the processor name string that is returned by
functions 8000_0002h-8000_0004h. If the brand ID field is 0, then the 12-bit brand ID
field (returned in EBX by extended function 8000_0001h) is used to determine the
processor name string. For more information on the 12-bit brand ID, see “Extended
Function 8000_0001h EBX: 12-bit Brand ID” on page 125.

For information on using the 8-bit brand ID to program the processor name string, see
the AMD Processor Recognition Application Note, order# 20734.

0000_0001h ECX: Standard Feature Support. Standard function 1 returns standard-feature
bits in the ECX register. The value of each bit indicates whether support for a specific
feature is present on the processor implementation. If the value of a bit is 1, the
feature is supported. If the value is 0, the feature is not supported. The ECX register is

122 CPUID

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

an extension of the EDX register to represent newly introduced standard processor
features.

Table 3-4 summarizes the standard-feature bits returned in the ECX register for
standard function 1.

Table 3-4. CPUID Standard Feature Support (Standard Function 1-ECX)

Feature

ECX Bit
! (feature is supported if bit is set to 1)

SSE3 Instructions. Indicates support for the SSE3 instructions. For details, see Appendix D, “Instruction
Subsets and CPUID Feature Sets.”

1-12 Reserved.

13 CMPXCHG16B Instruction.

14-31 | Reserved.

0000_0001h EDX: Standard Feature Support. Standard function 1 returns standard-feature
bits in the EDX register. The value of each bit indicates whether support for a specific
feature is present on the processor implementation. If the value of a bit is 1, the
feature is supported. If the value is 0, the feature is not supported.

Table 3-5 summarizes the standard-feature bits returned in the EDX register for
standard function 1.

Table 3-5. CPUID Standard Feature Support (Standard Function 1-EDX)

Feature

EDX Bit
! (feature is supported if bit is set to 1)

0 On-Chip x87-Instruction Unit.

1 Virtual-Mode Extensions. See “Virtual Interrupts” in Volume 2.

2 Debugging Extensions. See “Software-Debug Resources” in Volume 2.

3 Page-Size Extensions (PSE). See “Page-Size Extensions (PSE) Bit” in Volume 2.

4 Time-Stamp Counter. See “Time-Stamp Counter” in Volume 2.

AMD K86 Model-Specific Registers (MSRs), with RDMSR and WRMSR Instructions. See “Model-
Specific Registers (MSRs)” in Volume 2.

6 Physical-Address Extensions (PAE). See “Physical-Address Extensions (PAE) Bit” in Volume 2.

7 Machine Check Exception. See “Handling Machine Check Exceptions” in Volume 2.

CPUID 123

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Table 3-5. CPUID Standard Feature Support (Standard Function 1-EDX) (continued)

Feature

EDX Bit
! (feature is supported if bit is set to 1)

8 CMPXCHGSB Instruction.

Advanced Programmable Interrupt Controller (APIC). BIOS must enable the local APIC. See the
documentation for particular implementations of the architecture.

10 Reserved.

SYSENTER and SYSEXIT Instructions. These instructions have different implementations than the
11 SYSCALL and SYSRET instructions indicated by bit 11 of extended function 8000_0001h. See “SYSENTER
and SYSEXIT (Legacy Mode Only)” in Volume 2.

12 Memory-Type Range Registers (MTRRs). See “Memory-Type Range Registers” in Volume 2.

13 Page Global Extension. See “Global Pages” in Volume 2.

14 Machine Check Architecture. See “Machine Check Mechanism” in Volume 2.

Conditional Move Instructions. Indicates support for conditional move (CMOVcc) general-purpose
15 instructions, and—if the on-chip x87-instruction-unit bit (bit 0) is also set—for the x87 floating-point
conditional move (FCMOVcc) instructions.

16 Page Attribute Table (PAT). See “Memory-Type Range Registers” in Volume 2.

17 Page-Size Extensions (PSE). See”Page-Size Extensions (PSE) Bit” in Volume 2.

18 Reserved.

CLFLUSH Instruction. Indicates support for the CLFLUSH (writeback, if modified, and invalidate) general-

19 purpose instruction.

20-22 | Reserved.

MMX™ Instructions. Indicates support for the integer (MMX) 64-bit media instructions. For details, see
Appendix D, “Instruction Subsets and CPUID Feature Sets.”

24 FXSAVE and FXRSTOR Instructions. See “FXSAVE and FXRSTOR Instructions” in Volume 2.

23

SSE Instructions. Indicates support for the SSE instructions, except that the SSE instructions indicated for
the AMD Extensions to MMX Instructions feature (bit 22 of extended function 8000_0001h; see Table 3-7

2 on page 127) are implemented if bit 25 is cleared and bit 22 of extended function 8000_0001h is set. For
details, see Appendix D, “Instruction Subsets and CPUID Feature Sets.”
26 SSE2 Instruction Extensions. Indicates support for the SSE2 instructions. For details, see Appendix D,

“Instruction Subsets and CPUID Feature Sets.”

27 Reserved.

28 Hyper-Threading Technology (HTT). (See “Logical Processor Count” on page 122.)

29-31 | Reserved.

124 CPUID

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Extended Function
8000_0000h:
Processor Vendor and
Largest Extended
Function Number

Extended function 8000_0000h mimics the behavior of standard function 0, except
that extended function 8000_0000h returns the largest extended function number
instead of the largest standard function number.

Extended Function 8000_0000h EAX: Largest Extended Function Number. Extended
function 8000_0000h loads EAX with the largest CPUID extended function number
supported by the processor implementation.

Extended Function 8000_0000h EBX, EDX, and ECX: Processor Vendor. Extended

function 8000_0000h loads a 12-character string into the EBX, EDX, and ECX
registers identifying the processor vendor. For AMD processors, the string is
AuthenticAMD. This string informs software that it should follow the AMD CPUID
definition for subsequent CPUID function calls. If the function returns a another
vendor’s string, software must use that vendor’s CPUID definition when interpreting
the results of subsequent CPUID function calls. Table 3-1 on page 118 shows the
contents of the EBX, EDX, and ECX registers after executing extended
function 8000_0000h on an AMD processor.

Extended Function
8000_0001h:
Processor Signature
and AMD Features

Like standard function 1, extended function 8000_0001h returns the processor
signature and feature bits. However, the feature bits returned by this function include
a subset of the bits reported by standard function 1, along with additional bits for
AMD features.

Extended Function 8000_0001h EAX: Processor Signature. Extended function 8000_0001h
returns the processor signature in the EAX register; the signature provides
information on the processor revision (stepping) level and processor model, as well as
the instruction family that the processor supports.

Figure 3-1 on page 119 shows the format of the EAX register following execution of
CPUID extended function 8000_0001h. (The value returned in the EAX register for
function 8000_0001h is the same as the value returned by standard function 1.)

Extended Function 8000 0001h EBX: 12-bit Brand ID. Extended function 8000_0001h returns
a 12-bit brand ID for certain AMDG64 processors. As is the case with the 8-bit brand ID

CPUID 125

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

field, the BIOS uses the 12-bit brand ID field to program the processor name string
that is returned by extended functions 8000_0002h-8000_0004h. If the 8-bit brand ID
field is O (the value in EBX returned by standard function 1), then the 12-bit brand ID
is used to program the processor name string. For more information on the 8-bit brand
ID, see “Standard Function 1 EBX: Initial APIC ID, Logical Processor Count,
CLFLUSH Size, and 8-Bit Brand ID” on page 121.

Figure 3-3 shows the format of the EBX register following execution of CPUID
extended function 8000_0001h.

31 12 11 0
Reserved 12-Bit Brand ID

Bits Mnemonic Description

31-12 Reserved

11-0 12-Bit Brand ID

Figure 3-3. [Extended Function 8000_0001h EBX: 12-bit Brand ID

For information on using the 12-bit brand ID to program the processor name string,
see the AMD Processor Recognition Application Note, order# 20734.

Extended Function 8000_0001h ECX: AMD Feature Support. Extended function 8000_0001h
returns information about AMD features—those features that were originally
implemented by AMD—in the ECX and EDX registers. The value of each bit returned
indicates whether support for a specific feature is present on the processor
implementation. If the value of a bit is 1, the feature is supported. If the value is 0, the
feature is not supported.

Table 3-6 summarizes the feature bits returned in the ECX register by CPUID
extended function 8000_0001h.

Table 3-6. CPUID AMD Feature Support (Extended Function 8000_0001h—ECX)

Feature
(feature is supported if bit is set to 1)

0 LAHF/SAHF Supported in 64-Bit Mode.

ECX Bit

CMP Legacy. The HTT (Hyperthreading Technology) feature bit and the logical processor count field
1 (returned in EBX by standard function 1) indicate multiple cores in the package instead of hyperthreading.
(See “Logical Processor Count” on page 122.)

126 CPUID

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Table 3-6. CPUID AMD Feature Support (Extended Function 8000_0001h—ECX) (continued)

Feature

ECX Bit
! (feature is supported if bit is set to 1)

2-3 Reserved.

4 CR8 Available in Legacy Mode. (See “MOV(CRn)" on page 329.)
5-31 Reserved.

Extended Function 8000_0001h EDX: AMD Feature Support. Extended function 8000_0001h
returns information about AMD features in the EDX register. Extended function
8000_0001h also duplicates some of the standard-feature bits from standard
function 1 in the EDX register, but this practice is outdated. Any new feature that is
first implemented by a given vendor is now reported only by a function assigned to
that vendor.

Table 3-7 on page 127 summarizes the feature bits returned in the EDX register for
extended function 8000_0001h. The right-most column of this table indicates whether
a given bit has the same meaning when returned by standard function 1. If the bit has
the same meaning, use CPUID standard function 1 to test whether the feature is
supported. For a list of the feature bits returned by standard function 1, see Table 3-5
on page 123.

Table 3-7. CPUID AMD Feature Support (Extended Function 8000_0001h—EDX)

Same as
EBDI:(¢ . Featudre.ef bit i Function 1
(feature is supported if bit is set to 1) (Table 3-5)'
0 On-Chip x87-Instruction Unit. yes
1 Virtual-Mode Extensions. See “Virtual Interrupts” in Volume 2. yes
2 Debugging Extensions. See “Software-Debug Resources” in Volume 2. yes
3 Page-Size Extensions (PSE). See “Page-Size Extensions (PSE) Bit” in Volume 2. yes
4 Time-Stamp Counter. See “Time-Stamp Counter” in Volume 2. yes
5 AMD K86 Model-Specific Registers (MSRs), with RDMSR and WRMSR Instructions. See o
“Model-Specific Registers (MSRs)" in Volume 2. y
6 Physical-Address Extensions (PAE). See “Physical-Address Extensions (PAE) Bit” in os
Volume 2. y
Note:
1. If a bit has the same meaning for function 1 as it does for function 8000_0001h, the processor sets or clears the bit identically
for both functions.

CPUID 127

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Table 3-7. CPUID AMD Feature Support (Extended Function 8000_0001h—EDX) (continued)

Same as
EI::(¢ . Featudrc-ef bit i Function 1
(feature is supported if bit is set to 1) (Table 3-5)!
7 Machine Check Exception. See “Handling Machine Check Exceptions” in Volume 2. yes
8 CMPXCHGS8B Instruction. yes

Advanced Programmable Interrupt Controller (APIC). BIOS must enable the local APIC.

See the documentation for particular implementations of the architecture. yes

10 Reserved. no

SYSCALL and SYSRET Instructions. These instructions have different implementations
11 than the SYSENTER and SYSEXIT instructions indicated by bit 11 of standard function 1. For no
additional information, see “Fast System Call and Return” in Volume 2.

Memory-Type Range Registers (MTRRs). See “Memory-Type Range Registers” in

12 Volume 2. yes
13 Page Global Extension. See “Global Pages” in Volume 2. yes
14 Machine Check Architecture. See “Machine Check Mechanism” in Volume 2. yes

Conditional Move Instructions. Indicates support for conditional move (CMOVcc) general-
15 purpose instructions, and—if the on-chip x87-instruction-unit bit (bit 0) is also set—for the yes
x87 floating-point conditional move (FCMOVcc) instructions.

16 Page Attribute Table (PAT). See “Memory-Type Range Registers” in Volume 2. yes
17 Page-Size Extensions (PSE). See “Page-Size Extensions (PSE) Bit” in Volume 2. yes
18-19 | Reserved. no
20 No-Execute Page Protection. See “No Execute (NX) Bit” in Volume 2. no
21 Reserved. no

AMD Extensions to MMX™ Instructions. Indicates support for the AMD extensions to the
22 | integer (MMX) 64-bit media instructions, including support for certain SSE and SSE2 no
instructions. See Appendix D, “Instruction Subsets and CPUID Feature Sets,” for details.

MMX™ Instructions. Indicates support for the integer (MMX) 64-bit media instructions. For

2 details, see Appendix D, “Instruction Subsets and CPUID Feature Sets.” yes

24 FXSAVE and FXRSTOR Instructions. See “FXSAVE and FXRSTOR Instructions” in Volume 2. yes

25 Fast FXSAVE/FXRSTOR. See "FXSAVE and FXRSTOR Instructions" in Volume 2. no
Note:

1. If a bit has the same meaning for function 1 as it does for function 8000_0001h, the processor sets or clears the bit identically
for both functions.

128 CPUID

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Table 3-7. CPUID AMD Feature Support (Extended Function 8000_0001h—EDX) (continued)

Same as
EDX Feature Function 1
Bit (feature is supported if bit is set to 1) (Table 3-5)'
26 Reserved.
27 RDTSCP Instruction. no
28 Reserved.
29 | Long Mode. See “Long Mode” in Volume 2. no

AMD Extensions to 3DNow!™ Instructions. Indicates support for the AMD extensions to
30 | the floating-point (3DNow!) 64-bit media instructions. For details, see Appendix D, no
“Instruction Subsets and CPUID Feature Sets.”

AMD 3DNow!™ Instructions. Indicates support for the floating-point (3DNow!) 64-bit
31 media instructions. For details, see Appendix D, “Instruction Subsets and CPUID Feature no
Sets.”

Note:

1. If a bit has the same meaning for function 1 as it does for function 8000_0001h, the processor sets or clears the bit identically
for both functions.

Extended Functions
8000 _0002h-

8000 _0004h:
Processor Name

Extended functions 8000_0002h, 8000_0003h, and 8000_0004h together return an
ASCII string containing the name of the processor implementation. Software can
simply call these three functions in numerical order to obtain a 48-character ASCII
name string. Although the name string can be up to 48 characters in length, shorter
names have unused byte locations filled with the ASCII null character (00h).

Note: The BIOS must program the name string before these functions are executed;
otherwise, these functions return the default processor name string (48 ASCII
null characters).

The name string returned by these functions is in little-endian format. Extended
function 8000_0002h returns the first 16 characters of the name and extended
function 8000_0004h returns the last 16 characters. For each of the three groups of 16
characters, the functions return the name (in order of least-significant to most-
significant byte) in the EAX, EBX, ECX, and EDX registers. The first character resides
in the least-significant byte of EAX, and the last character resides in the most-
significant byte of EDX.

CPUID 129

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Table 3-8 on page 130 gives an example of the return values and their equivalent
ASCII characters for a processor with the following name string:

AMD Athlon(tm) processor

Table 3-8. Processor Name String Example

Function Register Return Value ASCII Characters
EAX 2044_4D41h “space D M A”
EBX 6C68_7441h “1 h t A”
8000_0002h
ECX 7428_6E6Fh “t (no”
EDX 7020_296Dh “p space) m”
EAX 6563_6F72h “ecor”
EBX 726F_7373h “ros s”
8000_0003h
ECX 0000_0000h
EDX 0000_0000h
EAX 0000_0000h
EBX 0000_0000h
8000_0004h
ECX 0000_0000h
EDX 0000_0000h

Extended Function
8000 _0005h: L1
Cache and TLB
Information

CPUID extended functions 8000_0005h and 8000_0006h provide cache and TLB
information. These functions are useful to diagnostic software that displays
information about the system and the configuration of the processor implementation,
including cache size and organization. For more information about the TLB and on-
chip caches, see “Translation-Lookaside Buffer (TLB)” in Volume 2 and “Memory
Caches” in Volume 2.

Extended function 8000_0005h returns information about the TLBs and L1 caches
integrated on the processor. Tables 3-9, 3-10, 3-11, and 3-12, all on page 131, show the
register formats for the information returned by function 8000_0005h.

In these tables, the associativity field is encoded as follows:
s 00Oh—Reserved.

130 CPUID

AMDA

24594 Rev. 3.10 February 2005

s 0lh—Direct mapped.

AMDG64 Technology

m 02h through FEh—The value represents the actual associativity. For example, a
value of 04h indicates 4-way associativity.

s FFh—Fully associative.

Table 3-9. CPUID TLB Bits for 2-Mbyte and 4-Mbyte Pages (Extended Function 8000_0005—EAX)

Register

Data TLB

Instruction TLB

Associativity

Number of Entries’

Associativity

Number of Entries'

EAX

Bits 31-24

Bits 23-16

Bits 15-8

Bits 7-0

Note:

1. The number of entries returned is the number of entries available for the 2-Mbyte page size. The 4-Mbyte pages may require two
2-Mbyte entries, depending on the implementation, so the number of entries available for the 4-Mbyte page size would be one-
half the returned value.

Table 3-10. CPUID TLB Bits for 4-Kbyte Pages (Extended Function 8000_0005—EBX)

Data TLB Instruction TLB
Register
Associativity Number of Entries Associativity Number of Entries
EBX Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Table 3-11. CPUID L1 Data Cache Bits (Extended Function 8000_0005—ECX)
L1 Data Cache
Register
Size (Kbytes) Associativity Lines Per Tag Line Size (Bytes)
ECX Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Table 3-12. CPUID L1 Instruction Cache Bits (Extended Function 8000_0005—EDX)
L1 Instruction Cache
Register
Size (Kbytes) Associativity Lines Per Tag Line Size (Bytes)
EDX Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
CPUID 131

AMDA
AMDG64 Technology

24594 Rev. 3.10 February 2005

Extended Function
8000_0006h: L2
Cache and TLB
Information

Extended function 8000_0006h returns information about the L2 cache integrated on
the processor. Tables 3-13, 3-14, and 3-15 on page 133 show the register-content
formats for the information returned by extended function 8000_0006h.

In these tables, the associativity field is encoded as follows:

m 00h—The L2 cache is off (disabled).
m 0lh—Direct mapped.

m 02h—2-way associative.

m 04h—4-way associative.

m 06h—8-way associative.

m 08h—16-way associative.

m OFh—Fully associative.

m All other encodings are reserved.

Table 3-13. CPUID L2 TLB Bits for 2-Mbyte and 4-Mbyte Pages (Extended Function 8000_0006—EAX)

L2 Data TLB L2 Instruction or Unified L2 TLB!
Register
Associativity Number of Entries? Associativity Number of Entries?
EAX Bits 31-28 Bits 27-16 Bits 15-12 Bits 11-0
Notes:

1. The presence of a unified L2 TLB is indicated by a value of 0000h in the upper 16 bits of the EAX register. The unified 2 TLB
information is contained in the lower 16 bits of the EAX register.

2. The number of entries returned is the number of entries available for the 2-Mbyte page size. The 4-Mbyte pages may require two
2-Mbyte entries, depending on the implementation, so the number of entries available for the 4-Mbyte page size would be one-
half the returned value.

Table 3-14. CPUID L2 TLB Bits for 4-Kbyte Pages (Extended Function 8000_0006—EBX)

_ L2 Data TLB L2 Instruction or Unified L2 TLB!
Register
Associativity Number of Entries Associativity Number of Entries
EBX Bits 31-28 Bits 27-16 Bits 15-12 Bits 11-0
Note:
1. The presence of a unified L2 TLB is indicated by a value of 0000h in the upper 16 bits of the EBX register. The unified L2 TLB
information is contained in the lower 16 bits of the EBX register.

132

CPUID

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Table 3-15. CPUID L2 Cache Bits(Extended Function 8000_0006—ECX)

L2 Cache
Register

Size (Kbytes) Associativity Lines Per Tag Line Size (Bytes)

ECX Bits 31-16 Bits 15-12 Bits 11-8 Bits 7-0

Extended Function 8000_0006h EDX. For extended function 8000_0006h, the EDX register
is reserved.

Extended Function
8000 _0007h:
Advanced Power
Management
Features

Extended Function 8000_0007h returns information about the advanced-power-
management features supported by the processor.

Extended Function 8000_0007h EAX, EBX, and ECX. For extended function 8000_0007h, the
EAX, EBX, and ECX registers are reserved.

Extended Function 8000 0007h EDX. Extended function 8000 _0007h returns information
about advanced-power-management features in the EDX register. Figure 3-4 shows the
format of the EDX register following execution of CPUID extended extended
function 8000_0007h. Each bit indicates whether support for a specific feature is
present on the processor implementation. If the value of a power-management-feature
bit is 1, the feature is supported. If the value is 0, the feature is not supported.

31 6 5 4 3 2 1 O
S T|V F

Reserved (‘g ’\TA ‘F|; |:I) I|D ;

Bits Mnemonic Description

31-6 Reserved

5 STC Software Thermal Control

4 ™ Thermal Monitoring

3 TTP Thermal Trip

2 VID Voltage ID Control

1 FID Frequency ID Control

0 TS Temperature Sensor

Figure 3-4. Extended Function 8000_0007h EDX: Advanced Power Management Features (EDX
Register)

CPUID 133

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Extended Function
8000_0008h:
Maximum Address
Sizes and Number of
CPU Cores

Extended function 8000_0008h reports the maximum supported virtual-address and
physical-address sizes and the number of CPUID cores on the CPU.

Extended Function 8000_0008h EAX. Extended function 8000_0008h reports address-size
information in the EAX register. Figure 3-5 on page 134 shows the format of the EAX
register during execution of CPUID extended function 8000_0008h. The virtual-
address and physical-address sizes that are returned indicate the address widths, in
bits, supported by the processor implementation. The values returned by this function
are not influenced by enabling or disabling either long mode or physical-address
extensions (CR4.PAE).

31 16 15 8 7 0
Reserved, RAZ Max Virtual Address Width Max Physical Address Width

Bits Definition Value

31-16 Reserved RAZ

15-8 Maximum Virtual Address Width 30h (48 bits)
7-0 Maximum Physical Address Width 28h (40 bits)

Figure 3-5. Extended Function 8000_0008h EAX: Virtual and Physical Address Widths

Extended Function 8000_0008h ECX. For extended function 8000_0008h, the ECX register
bits 7-0 indicate the number of physical cores on the CPU package being tested.

31 7 0
Reserved (RAZ) Physical Core Count

Bits Definition Value

31-8 Reserved RAZ

7-0 Physical Core Count Number of physical cores in the

package, minus one.

Figure 3-6. [Extended Function 8000_0008h ECX: Physical Core Count

Extended Function 8000 _0008h EBX and EDX. For extended function 8000_0008h, the EBX
and EDX registers are reserved.

134 CPUID

AMDA

24594 Rev. 3.10 February 2005

Related Instructions
None

rFLAGS Affected
None

Exceptions

None

AMDG64 Technology

CPUID

135

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

DAA Decimal Adjust after Addition

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF
flags in the rFLAGS register to indicate a decimal carry out of either nibble of AL.

Use this instruction to adjust the result of a byte ADD instruction that performed the
binary addition of one 2-digit packed BCD values to another.

The instruction performs the adjustment by adding 06h to AL if the lower nibble is
greater than 9 or if AF = 1. Then 60h is added to AL if the original AL was greater than
99h or if CF = 1.

If the lower nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not
modified. If the upper nibble of AL was adjusted, the CF flagis set to 1. Otherwise, CF
is not modified. SF, ZF, and PF are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description

Decimal adjust AL.

DAA 27 (Invalid in 64-bit mode.)

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U M M M M| M

21 [20 | 19 | 18 | 17 16 | 14 13-12 1 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

136 DAA

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

DAS Decimal Adjust after Subtraction

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF
flags in the rFLAGS register to indicate a decimal borrow.

Use this instruction adjust the result of a byte SUB instruction that performed a
binary subtraction of one 2-digit, packed BCD value from another.

This instruction performs the adjustment by subtracting 06h from AL if the lower
nibble is greater than 9 or if AF = 1. Then 60h is subtracted from AL if the original AL
was greater than 99h or if CF = 1.

If the adjustment changes the lower nibble of AL, the AF flagis set to 1; otherwise AF
is not modified. If the adjustment results in a borrow for either nibble of AL, the CF
flag is set to 1; otherwise CF is not modified. The SF, ZF, and PF flags are set according
to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description

Decimal adjusts AL after subtraction.

DAS 2k (Invalid in 64-bit mode.)

Related Instructions
DAA

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U M M M M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

DAS 137

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

DEC Decrement by 1

Subtracts 1 from the specified register or memory location. The CF flag is not
affected.

The one-byte forms of this instruction (opcodes 48 through 4F) are used as REX
prefixes in 64-bit mode. See “REX Prefixes” on page 14.

The forms of the DEC instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

To perform a decrement operation that updates the CF flag, use a SUB instruction
with an immediate operand of 1.

Mnemonic Opcode Description
DEC reg/mem8 FE/1 Eyeﬁrement the contents of an 8-bit register or memory location
DEC reg/mem|6 FF /1 E;(irement the contents of a 16-bit register or memory location
DEC reg/mem32 FF /) Eyeﬁrement the contents of a 32-bit register or memory location
DEC reg/memé4 FF /1 E;(irement the contents of a 64-bit register or memory location
Decrement the contents of a 16-bit register by 1.
DECregl6 48 +rw " -
(See "REX Prefixes” on page 14.)
Decrement the contents of a 32-bit register by 1.
DECreg32 48 +rd

(See "REX Prefixes” on page 14.)

Related Instructions

INC, SUB

138 DEC

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

rFLAGS Affected
ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M MM M| M
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded the data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

DEC 139

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

DIV Unsigned Divide

Divides the unsigned value in a register by the unsigned value in the specified register
or memory location. The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the
quotient in the AL register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant
word of the dividend is in the rDX register and the least-significant word is in the rAX
register. After the division, the instruction stores the quotient in the rAX register and
the remainder in the rDX register.

The following table summarizes the action of this instruction:

Division Size Dividend Divisor Quotient Remainder Maximum Quotient
Word/byte AX reg/mem8 AL AH 255
Doubleword/word DX:AX reg/mem16 AX DX 65,535
Quadword/doubleword | EDX:EAX | reg/mem32 EAX EDX 2324
23:('1":50‘:(‘1‘3‘1""”‘1/ RDX:RAX | reg/memé4 | RAX RDX 264 1

The instruction truncates non-integral results towards 0 and the remainder is always
less than the divisor. An overflow generates a #DE (divide error) exception, rather
than setting the CF flag.

Division by zero generates a divide-by-zero exception.

Mnemonic Opcode Description

Perform unsigned division of AX by the contents of an 8-bit
DIV reg/mem8 F6 /6 register or memory location and store the quotient in AL and the
remainder in AH.

Perform unsigned division of DX:AX by the contents of a 16-bit
DIV reg/mem16 F7/6 register or memory operand store the quotient in AX and the
remainder in DX.

140 biv

AMDA

Related Instructions

24594 Rev. 3.10 February 2005
Mnemonic Opcode
DIV reg/mem32 F7/6
DIV reg/mem64 F7/6

AMDG64 Technology

Description

Perform unsigned division of EDX:EAX by the contents of a 32-bit
register or memory location and store the quotient in EAX and
the remainder in EDX.

Performs unsigned division of RDX:RAX by the contents of a 64-
bit register or memory location and store the quotient in RAX and
the remainder in RDX.

MUL
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U U
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X The divisor operand was 0.
X X X The quotient was too large for the designated register.
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

b 141

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

ENTER Create Procedure Stack Frame

Creates a stack frame for a procedure.
The first operand specifies the size of the stack frame allocated by the instruction.

The second operand specifies the nesting level (0 to 31—the value is automatically
masked to 5 bits). For nesting levels of 1 or greater, the processor copies earlier stack
frame pointers before adjusting the stack pointer. This action provides a called
procedure with access points to other nested stack frames.

The 32-bit enter N, 0 (a nesting level of 0) instruction is equivalent to the following
32-bit instruction sequence:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

The ENTER and LEAVE instructions provide support for block structured languages.
The LEAVE instruction releases the stack frame on returning from a procedure.

In 64-bit mode, the operand size of ENTER defaults to 64 bits, and there is no prefix
available for encoding a 32-bit operand size.

Mnemonic Opcode Description
ENTER imm16, 0 C8 1w 00 Create a procedure stack frame.
ENTER imm16, 1 C8iw 01 Create a nested stack frame for a procedure.
ENTER imm 16, imm8 C8iwib Create a nested stack frame for a procedure.
Action

// See “Pseudocode Definitions” on page 49.
ENTER_START:
temp_ALLOC_SPACE = word-sized immediate specified in the instruction
(first operand), zero-extended to 64 bits
temp_LEVEL = byte-sized immediate specified in the instruction
(second operand), zero-extended to 64 bits

temp_LEVEL = temp_LEVEL AND Ox1f
// only keep 5 bits of Tevel count

PUSH.v ol1d_RBP

142 ENTER

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
temp_RBP = RSP // This value of RSP will eventually be Toaded
// into RBP.
IF (temp_LEVEL>0) // Push "temp_LEVEL" parameters to the stack.
{

FOR (I=1; I<temp_LEVEL; I++)
// A11 but one of the parameters are copied
// from higher up on the stack.

temp_DATA = READ_MEM.v [SS:0l1d_RBP-I*V]
PUSH.v temp_DATA
}
PUSH.v temp_RBP // The Tast parameter is the offset of the old
// value of RSP on the stack.
}
RSP.s = RSP - temp_ALLOC_SPACE // Leave "temp_ALLOC_SPACE" free bytes on
// the stack

WRITE_MEM.v [SS:RSP.s] = temp_unused // ENTER finishes with a memory write
// check on the final stack pointer,
// but no write actually occurs.

RBP.v = temp_RBP
EXIT

Related Instructions

LEAVE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack-segment limit or was non-
canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

ENTER 143

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

IDIV Signed Divide

Divides the signed value in a register by the signed value in the specified register or
memory location. The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the
quotient in the AL register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant
word of the dividend is in the rDX register and the least-significant word is in the rAX
register. After the division, the instruction stores the quotient in the rAX register and
the remainder in the rDX register.

The following table summarizes the action of this instruction:

Division Size Dividend Divisor Quotient Remainder Quotient Range
Word/byte AX reg/mem8 AL AH -128 to +127
Doubleword/word DX:AX reg/mem16 AX DX -32,768 to +32,767
Quadword/doubleword | EDX:EAX | reg/mem32 EAX EDX 23102311
zs:gdfo‘r‘é‘adwmd/ RDXRAX | reg/memé4 | RAX RDX 2639263 |

The instruction truncates non-integral results towards 0. The sign of the remainder is
always the same as the sign of the dividend, and the absolute value of the remainder is
less than the absolute value of the divisor. An overflow generates a #DE (divide error)
exception, rather than setting the OF flag.

To avoid overflow problems, precede this instruction with a CBW, CWD, CDQ, or CQO
instruction to sign-extend the dividend.

Mnemonic Opcode Description

Perform signed division of AX by the contents of an 8-bit register
IDIV reg/mem8 F6 /7 or memory location and store the quotient in AL and the
remainder in AH.

Perform signed division of DX:AX by the contents of a 16-bit
IDIV reg/mem1i6 F7/7 register or memory location and store the quotient in AX and the
remainder in DX.

144 iblv

AMDA

Related Instructions

24594 Rev. 3.10 February 2005
Mnemonic Opcode
IDIV reg/mem32 F7/7
IDIV reg/memé64 F7/7

AMDG64 Technology

Description

Perform signed division of EDX:EAX by the contents of a 32-bit
register or memory location and store the quotient in EAX and
the remainder in EDX.

Perform signed division of RDX:RAX by the contents of a 64-bit
register or memory location and store the quotient in RAX and
the remainder in RDX.

IMUL
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U U
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X The divisor operand was 0.
X X X The quotient was too large for the designated register.
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

IDIv 145

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

IMUL Signed Multiply

Multiplies two signed operands. The number of operands determines the form of the
instruction.

If a single operand is specified, the instruction multiplies the value in the specified
general-purpose register or memory location by the value in the AL, AX, EAX, or RAX
register (depending on the operand size) and stores the product in AX, DX:AX,
EDX:EAX, or RDX:RAX, respectively.

If two operands are specified, the instruction multiplies the value in a general-
purpose register (first operand) by an immediate value or the value in a general-
purpose register or memory location (second operand) and stores the product in the
first operand location.

If three operands are specified, the instruction multiplies the value in a general-
purpose register or memory location (second operand), by an immediate value (third
operand) and stores the product in a register (first operand).

The IMUL instruction sign-extends an immediate operand to the length of the other
register/memory operand.

The CF and OF flags are set if, due to integer overflow, the double-width
multiplication result cannot be represented in the half-width destination register.
Otherwise the CF and OF flags are cleared.

Mnemonic Opcode Description

Multiply the contents of AL by the contents of an 8-bit memory

IMUL reg/mems F6/5 or register operand and put the signed result in AX.

Multiply the contents of AX by the contents of a 16-bit memory or

IMUL reg/mem16 F7/5 register operand and put the signed result in DX:AX.

Multiply the contents of EAX by the contents of a 32-bit memory
IMUL reg/mem32 F7/5 or register operand and put the signed result in EDX:EAX.
IMUL reg/memé4 F7 /5 Multiply the contents of RAX by the contents of a 64-bit memory

or register operand and put the signed result in RDX:RAX.

Multiply the contents of a 16-bit destination register by the
IMUL reg16, reg/mem16 OF AF /r contents of a 16-bit register or memory operand and put the
signed result in the 16-bit destination register.

146 IMUL

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Mnemonic Opcode Description

Multiply the contents of a 32-bit destination register by the
IMUL reg32, reg/mem32 OF AF /r contents of a 32-bit register or memory operand and put the
signed result in the 32-bit destination register.

Multiply the contents of a 64-bit destination register by the
IMUL reg64, reg/memé64 OF AF /r contents of a 64-bit register or memory operand and put the
signed result in the 64-bit destination register.

Multiply the contents of a 16-bit register or memory operand by a
IMUL reg 16, reg/mem16, immé8 6B/ ib sign-extended immediate byte and put the signed result in the
16-bit destination register.

Multiply the contents of a 32-bit register or memory operand by
IMUL reg32, reg/mem32, imm8 6B /rib a sign-extended immediate byte and put the signed result in the
32-bit destination register.

Multiply the contents of a 64-bit register or memory operand by
IMUL reg64, reg/memé64, imm8 6B/ ib a sign-extended immediate byte and put the signed result in the
64-bit destination register.

Multiply the contents of a 16-bit register or memory operand by a
IMUL reg 16, reg/mem16, imm16 69/r iw sign-extended immediate word and put the signed result in the
16-bit destination register.

Multiply the contents of a 32-bit register or memory operand by
IMUL reg32, reg/mem32, imm32 69/rid a sign-extended immediate double and put the signed result in
the 32-bit destination register.

Multiply the contents of a 64-bit register or memory operand by
IMUL reg64, reg/mem64, imm32 69 /rid a sign-extended immediate double and put the signed result in
the 64-bit destination register.

Related Instructions

IDIV

IMUL 147

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M U U U U M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

148 IMUL

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

IN Input from Port

Transfers a byte, word, or doubleword from an I/O port (second operand) to the AL,
AX or EAX register (first operand). The port address can be an 8-bit immediate value
(00h to FFh) or contained in the DX register (0000h to FFFFh).

The port is in the processor’s I/O address space. For 8-bit I/O port accesses, the opcode
determines the port size. For 16-bit and 32-bit accesses, the operand-size attribute
determines the port size. If the operand size is 64-bits, IN reads only 32 bits from the
1/O port.

If the CPL is higher than IOPL, or the mode is virtual mode, IN checks the I/0
permission bitmap in the TSS before allowing access to the I/O port. (See Volume 2 for
details on the TSS I/O permission bitmap.)

Mnemonic Opcode Description

Input a byte from the port at the address specified by imm8 and

IN'AL, /mm8 E4ib put it into the AL register.

Input a word from the port at the address specified by immé8 and

IN AX, imms E5ib put it into the AX register.
, : Input a doubleword from the port at the address specified by

IN'EAX, immé Esib imm8 and put it into the EAX register.

IN AL, DX EC Input a byte from the port at the address specified by the DX
register and put it into the AL register.

IN AX, DX D Input a word from the port at the address specified by the DX
register and put it into the AX register.

IN EAX. DX D Input a doubleword from the port at the address specified by the

DX register and put it into the EAX register.

Related Instructions
INSx, OUT, OUTSx
rFLAGS Affected

None

IN 149

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X One or more I/O permission bits were set in the TSS for the accessed
#GP port.
X The CPL was greater than the IOPL and one or more I/O permission
bits were set in the TSS for the accessed port.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

150

IN

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

INC Increment by 1

Adds 1 to the specified register or memory location. The CF flag is not affected, even
if the operand is incremented to 0000.

The one-byte forms of this instruction (opcodes 40 through 47) are used as REX
prefixes in 64-bit mode. See “REX Prefixes” on page 14.

The forms of the INC instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

To perform an increment operation that updates the CF flag, use an ADD instruction
with an immediate operand of 1.

Mnemonic Opcode Description
INC reg/mems FE /0 g]ycrfment the contents of an 8-bit register or memory location
INC reg/memi6 FF /0 I]r.lcrement the contents of a 16-bit register or memory location by
INC reg/mem32 FF /0 I]r'mrement the contents of a 32-bit register or memory location by
INC reg/mem64 FF /0 Increment the contents of a 64-bit register or memory location

by 1.

Increment the contents of a 16-bit register by 1.

INCregi6 40 +rw (These opcodes are used as REX prefixes in 64-bit mode. See
“REX Prefixes” on page 14.)

Increment the contents of a 32-bit register by 1.

INC reg32 40 +rd (These opcodes are used as REX prefixes in 64-bit mode.See
“REX Prefixes” on page 14.)

Related Instructions

ADD, DEC

INC 151

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M| M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

152 INC

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

INS Input String
INSB

INSW

INSD

Transfers data from the I/0 port specified in the DX register to an input buffer
specified in the rDI register and increments or decrements the rDI register according
to the setting of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rDI by 1, 2, or 4, depending on the
number of bytes read. If the DF flagis 1, it decrements the pointer by 1, 2, or 4.

In 16-bit and 32-bit mode, the INS instruction always uses ES as the data segment. The
ES segment cannot be overridden with a segment override prefix. In 64-bit mode, INS
always uses the unsegmented memory space.

The INS instructions use the explicit memory operand (first operand) to determine
the size of the I/0 port, but always use ES:[rDI] for the location of the input buffer. The
explicit register operand (second operand) specifies the I/O port address and must
always be DX.

The INSB, INSW, and INSD instructions copy byte, word, and doubleword data,
respectively, from the I/O port (0000h to FFFFh) specified in the DX register to the
input buffer specified in the ES:rDI registers.

If the operand size is 64-bits, the instruction behaves as if the operand size were 32-
bits.

If the CPL is higher than the IOPL or the mode is virtual mode, INSx checks the I/O
permission bitmap in the TSS before allowing access to the I/O port. (See volume 2 for
details on the TSS I/O permission bitmap.)

The INSx instructions support the REP prefix for block input of rCX bytes, words, or
doublewords. For details about the REP prefix, see “Repeat Prefixes” on page 10.

INSx 153

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Mnemonic Opcode Description

Input a byte from the port specified by DX, put it into the
INS mem8, DX 6C memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a word from the port specified by DX register, put it into the
INS memi6, DX 6D memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a doubleword from the port specified by DX, put it into the
INS mem32, DX 6D memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a byte from the port specified by DX, put it into the
INSB 6C memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a word from the port specified by DX, put it into the
INSW 6D memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a doubleword from the port specified by DX, put it into the
INSD 6D memory location specified in ES:rDI, and then increment or
decrement rDI.

Related Instructions
IN, OUT, OUTSx
rFLAGS Affected

None

154 INSx

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X One or more I/0 permission bits were set in the TSS for the accessed
port.

X The CPL was greater than the IOPL and one or more I/O permission
bits were set in the TSS for the accessed port.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

INSx 155

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

INT Interrupt to Vector

Transfers execution to the interrupt handler specified by an 8-bit unsigned immediate
value. This value is an interrupt vector number (00h to FFh), which the processor uses
as an index into the interrupt-descriptor table (IDT).

For detailed descriptions of the steps performed by INTn instructions, see the
following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

See also the descriptions of the INT3 instruction on page 304 and the INTO
instruction on page 164.

Mnemonic Opcode Description
INT imm8 CDib Call interrupt service routine specified by interrupt vector imms.
Action

// See “Pseudocode Definitions” on page 49.
INT_N_START:

IF (REAL_MODE)
INT_N_REAL

ELSIF (PROTECTED_MODE)
INT_N_PROTECTED

ELSE // (VIRTUAL_MODE)
INT_N_VIRTUAL

INT_N_REAL:
temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
zero-extended to 64 bits

temp_RIP = READ_MEM.w [idt:temp_int_n_vector*4]
// read target CS:RIP from the real-mode idt
READ_MEM.w [idt:temp_int_n_vector*4+2]

temp_CS

PUSH.w ol1d_RFLAGS
PUSH.w 01d_CS
PUSH.w next_RIP

156 INT

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

IF (temp_RIP>CS.T1imit)
EXCEPTION [#GP]

CS.sel = temp_CS
CS.base = temp_CS SHL 4

RFLAGS.AC,TF,IF,RF cleared
RIP = temp_RIP
EXIT

INT_N_PROTECTED:

temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
zero-extended to 64 bits
temp_idt_desc = READ_IDT (temp_int_n_vector)

IF (temp_idt_desc.attr.type = "taskgate’)
TASK_SWITCH // using tss selector in the task gate as the target tss

IF (LONG_MODE) // The size of the gate controls the size of the
// stack pushes.
V=8-byte // Long mode only uses 64-bit gates.
ELSIF ((temp_idt_desc.attr.type = "intgate3?2’)
|| (temp_idt_desc.attr.type = “trapgate32’))

V=4-byte // Legacy mode, using a 32-bit gate
ELSE // gate is intgatel6 or trapgatel6b
V=2-byte // Legacy mode, using a 16-bit gate

temp_RIP = temp_idt_desc.offset

IF (LONG_MODE)
// In long mode, we need to read the 2nd half of a
// 16-byte interrupt-gate from the IDT, to get the
// upper 32 bits of the target RIP

temp_upper = READ_MEM.q [idt:temp_int_n_vector*16+8]

temp_RIP = tempRIP + (temp_upper SHL 32) // concatenate both halves of RIP
}

CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)

IF (CS.attr.conforming=1)
temp_CPL = CPL
ELSE
temp_CPL = CS.attr.dpl

IF (CPL=temp_CPL) // no privilege-level change
{
IF (LONG_MODE)

INT 157

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

IF (temp_idt_desc.ist!=0)
// In long mode, if the IDT gate specifies an IST pointer,
// a stack-switch is always done
RSP = READ_MEM.q [tss:ist_index*8+28]

RSP = RSP AND OxFFFFFFFFFFFFFFFO
// In long mode, interrupts/exceptions align RSP to a
// 16-byte boundary

PUSH.q 0o1d_SS // In Tlong mode, SS:RSP is always pushed to the stack
PUSH.g old_RSP
}

PUSH.v 0ol1d_RFLAGS
PUSH.v 01d_CS
PUSH.v next_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))

EXCEPTION [#GP(0)]

RFLAGS.VM,NT,TF,RF cleared

RFLAGS.IF cleared if interrupt gate

RIP = temp_RIP

EXIT
}
ELSE // (CPL > temp_CPL), changing privilege Tevel
{

CPL = temp_CPL

temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER
(CPL, temp_idt_desc.ist)

IF (LONG_MODE)
temp_RSP = temp_RSP AND OxFFFFFFFFFFFFFFFO
// in long mode, interrupts/exceptions align rsp
// to a 16-byte boundary

RSP.q = temp_RSP
SS = temp_SS_desc

PUSH.v 01d_SS // #SS on the following pushes uses SS.sel as error code
PUSH.v ol1d_RSP

PUSH.v ol1d_RFLAGS

PUSH.v 01d_CS

PUSH.v next_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))

158 INT

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

EXCEPTION [#GP(0)]

RFLAGS.VM,NT,TF,RF cleared
RFLAGS.IF cleared if interrupt gate
RIP = temp_RIP

EXIT

INT_N_VIRTUAL:

temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
zero-extended to 64 bits

IF (CR4.VME=0) // vme isn’t enabled
{
IF (RFLAGS.IOPL=3)
INT_N_VIRTUAL_TO_PROTECTED
ELSE
EXCEPTION [#GP(0)]
}

temp_IRB_BASE = READ_MEM.w [tss:102] - 32
// check the vme Int-n Redirection Bitmap (IRB), to see
// if we should redirect this interrupt to a virtual-mode
// handler
temp_VME_REDIRECTION_BIT = READ_BIT_ARRAY ([tss:temp_IRB_BASE],
temp_int_n_vector)

IF (temp_VME_REDIRECTION_BIT=1)
{ // the virtual-mode int-n bitmap bit is set, so don’t
// redirect this interrupt
IF (RFLAGS.IOPL=3)
INT_N_VIRTUAL_TO_PROTECTED
ELSE
EXCEPTION [#GP(0)]
}
ELSE // redirect interrupt through virtual-mode idt
{
temp_RIP

READ_MEM.w [O:temp_int_n_vector*4]
// read target CS:RIP from the virtual-mode idt at
// Tinear address 0

temp_CS READ_MEM.w [O:temp_int_n_vector*4+2]

IF (RFLAGS.IOPL < 3)
01d_RFLAGS = ol1d_RFLAGS with VIF bit shifted into IF bit, and IOPL = 3

PUSH.w ol1d_RFLAGS
PUSH.w 01d_CS
PUSH.w next_RIP

INT 159

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

CS.sel = temp_CS
CS.base = temp_CS SHL 4

RFLAGS.TF,RF cleared

RIP = temp_RIP // RFLAGS.IF cleared if IOPL =3
// RFLAGS.VIF cleared if IOPL < 3

EXIT

INT_N_VIRTUAL_TO_PROTECTED:

temp_idt_desc = READ_IDT (temp_int_n_vector)
IF (temp_idt_desc.attr.type = "taskgate’)
TASK_SWITCH // using tss selector in the task gate as the target tss

IF ((temp_idt_desc.attr.type = ’intgate3?2’)
|| (temp_idt_desc.attr.type = “trapgate32’))
// the size of the gate controls the size of the stack pushes
V=4-byte // Tegacy mode, using a 32-bit gate
ELSE // gate is intgatel6 or trapgatel6
V=2-byte // Tegacy mode, using a 16-bit gate

temp_RIP = temp_idt_desc.offset
CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)

IF (CS.attr.dpl1!=0) // Handler must run at CPL 0.
EXCEPTION [#GP(CS.sel)]

CPL =0

temp_ist = 0 // Legacy mode doesn’t use ist pointers

temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (CPL, temp_ist)

RSP.q = temp_RSP
SS = temp_SS_desc

PUSH.v 01d_GS // #SS on the following pushes use SS.sel as error code.
PUSH.v ol1d_FS

PUSH.v 01d_DS

PUSH.v ol1d_ES

PUSH.v 01d_SS

PUSH.v ol1d_RSP

PUSH.v ol1d_RFLAGS // Pushed with RF clear.

PUSH.v 01d_CS

PUSH.v next_RIP

IF (temp_RIP > CS.1imit)
EXCEPTION [#GP(0)]

DS = NULL // can’t use virtual-mode selectors in protected mode

160 INT

AMDA

24594 Rev. 3.10 February 2005

ES =
FS =
6S =

RFLAGS.VM,NT,TF,

NULL
NULL
NULL

/7
/7
/7

AMDG64 Technology

can’t use virtual-mode selectors in protected mode
can’t use virtual-mode selectors in protected mode
can’t use virtual-mode selectors in protected mode

RF cleared

RFLAGS.IF cleared if interrupt gate

RIP
EXIT

temp_RIP

Related Instructions

INT 3, INTO, BOUND

rFLAGS Affected

If a task switch occurs, all flags are modified. Otherwise settings are as follows:

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M| M| M 0 M M 0
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.

INT

161

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid TSS, #TS X X As part of a stack switch, the target stack segment selector or rSP in
(selector) the TSS was beyond the TSS limit.
X X As part of a stack switch, the target stack segment selector in the TSS

was a null selector.

X X As part of a stack switch, the target stack segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X X As part of a stack switch, the target stack segment selector in the TSS
was beyond the limit of the GDT or LDT descriptor table.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a RPL that was not equal to its DPL.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a DPL that was not equal to the CPL of the code segment
selector.

X X As part of a stack switch, the target stack segment selector in the TSS
was not a writable segment.

Segment not present, X X The accessed code segment, interrupt gate, trap gate, task gate, or

#NP (selector) TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical, and no stack switch occurred.

Stack, #SS X X After a stack switch, a memory address exceeded the stack segment

(selector) limit or was non-canonical.

X X As part of a stack switch, the SS register was loaded with a non-null

segment selector and the segment was marked not present.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X X X The target offset exceeded the code segment limit or was non-canon-
ical.
X The IOPL was less than 3 and CR4.VME was 0.
X IOPL was less than 3, CR4.VME was 1, and the corresponding bit in

the VME interrupt redirection bitmap was 1.

162 INT

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The interrupt vector was beyond the limit of IDT.
#GP
(selector) X X The descriptor in the IDT was not an interrupt, trap, or task gate in

legacy mode or not a 64-bit interrupt or trap gate in long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less than
the CPL.

X X The segment selector specified by the interrupt or trap gate had its Tl
bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X The segment descriptor specified by the interrupt or trap gate was
not a code segment in legacy mode, or not a 64-bit code segment in
long mode.

X The DPL of the segment specified by the interrupt or trap gate was

greater than the CPL.
X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

INT 163

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

INTO Interrupt to Overflow Vector

Checks the overflow flag (OF) in the rFLAGS register and calls the overflow exception
(#OF) handler if the OF flag is set to 1. This instruction has no effect if the OF flag is
cleared to 0. The INTO instruction detects overflow in signed number addition. See
AMD64 Architecture Programmer’s Manual Volume 1: Application Programming for more
information on the OF flag.

Using this instruction in 64-bit mode generates an invalid-opcode exception.
For detailed descriptions of the steps performed by INT instructions, see the

following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Mnemonic Opcode Description

Call overflow exception if the overflow flag is set.

INTO CE (Invalid in 64-bit mode.)
Action
IF (64BIT_MODE)
EXCEPTION[#UD]
IF (RFLAGS.OF = 1) // #0F is a trap, and pushes the rIP of the instruction
EXCEPTION [#0F] // following INTO.
EXIT

Related Instructions
INT, INT 3, BOUND
rFLAGS Affected
None.

Exceptions

Virtual
Exception Real | 8086 |Protected Cause of Exception

Overflow, #OF X X X The INTO instruction was executed with OF set to 1.

Invalid opcode, #UD X Instruction was executed in 64-bit mode.

164 INTO

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Jec Jump on Condition

Checks the status flags in the rFLAGS register and, if the flags meet the condition
specified by the condition code in the mnemonic (cc), jumps to the target instruction
located at the specified relative offset. Otherwise, execution continues with the
instruction following the Jcc instruction.

Unlike the unconditional jump (JMP), conditional jump instructions have only two
forms—short and near conditional jumps. Different opcodes correspond to different
forms of one instruction. For example, the JO instruction (jump if overflow) has
opcode OFh 80h for its near form and 70h for its short form, but the mnemonic is the
same for both forms. The only difference is that the near form has a 16- or 32-bit
relative displacement, while the short form always has an 8-bit relative displacement.

Mnemonics are provided to deal with the programming semantics of both signed and
unsigned numbers. Instructions tagged A (above) and B (below) are intended for use
in unsigned integer code; those tagged G (greater) and L (less) are intended for use in
signed integer code.

If the jump is taken, the signed displacement is added to the rIP (of the following
instruction) and the result is truncated to 16, 32, or 64 bits, depending on operand
size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the
8-bit or 32-bit displacement value to 64 bits before adding it to the RIP.

These instructions cannot perform far jumps (to other code segments). To create a far-
conditional-jump code sequence corresponding to a high-level language statement
like:

IF A =B THEN GOTO FarlLabel
where FarLabel is located in another code segment, use the opposite condition in a

conditional short jump before an unconditional far jump. Such a code sequence might
look like:

cmp A,B ; compare operands

Jjne NextInstr ; continue program if not equal

Jjmp far FarlLabel ; far jump if operands are equal
NextInstr: ; continue program

For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Jec 165

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
JO rel8off 70 cb
JO reli6off OF 80 cw Jump if overflow (OF =1).
JO rel320ff OF 80 cd
INO rel8off ch
INO rel160ff OF 81 aw Jump if not overflow (OF = 0).
INO rel320ff OF 81 cd
JB rel8off 72ch
JB rel160ff OF 82 aw Jump if below (CF=1).
JB rel32off OF 82 cd
JC rel8off 72 cb
JCreli6off OF 82 aw Jump if carry (CF=1).
JC rel320ff OF 82 cd
JNAE rel8off 72ch
JNAE rel160ff OF 82 aw Jump if not above or equal (CF =1).
JNAE rel32off OF 82 cd
INB rel8off 73 ¢b
INB reli6off OF 83 aw Jump if not below (CF = 0).
INB rel320ff OF 83 cd
INC rel8off 75¢h
INC rel160ff OF 83 aw Jump if not carry (CF =0).
INC rel320ff OF 83 cd
JAE rel8off 73 ¢b
JAE rel16off OF 83 aw Jump if above or equal (CF =0).
JAE rel32off OF 83 cd
)7 rel8off 74 cb
)7 reli6off OF 84 cw Jump if zero (ZF=1).
)7 rel320ff OF 84 cd
JE rel8off 74 cb
JE rel 160ff OF 84 aw Jump if equal (ZF =1).
JE rel320ff OF 84 cd
INZ rel8off 75¢b
INZ rel16off OF 85 aw Jump if not zero (ZF =0).
INZ rel32off OF 85 cd
INE rel8off 75¢h
INE rel160ff OF 85 aw Jump if not equal (ZF =0).
INE rel320ff OF 85 cd

166 Jec

AMDA

24594 Rev. 3.10 February 2005

Mnemonic

JBE rel8off
JBE rel160ff
JBE rel320ff

INA rel8off
INA reli6off
INA rel320ff

INBE rel8off
INBE reli60ff
INBE ref320ff

JA relSoff
JA rell6off
JA rel320ff

IS rel8off
IS reli6off
IS rel320ff

INS rel8off
INS rel160ff
INS rel320ff

P rel8off
IP relioff
P rel320ff

JPE relSoff
JPE reli6off
JPE rel320ff

INP rel8off
INP rel160ff
INP rel320ff

JPO rel8off
JPO religoff
JPO rel320ff

IL rel8off
IL rel160ff
IL rel320ff

INGE rel8off
INGE reli60ff
INGE rel320ff

INL ref8off
INL rel160ff
INL rel320ff

Opcode

76 ¢b
OF 86 cw
OF 86 cd

76 ¢cb
OF 86 aw
OF 86 cd

77 ¢h
OF 87 cw
OF 87 cd

77 ¢cb
OF 87 aw
OF 87 cd

78 cb
OF 88 cw
OF 88 cd

79 ch
OF 89 aw
OF 89 cd

7A cb
OF 8A cw
OF 8A cd

7A cb
OF 8A aw
OF 8A cd

7B chb
OF 8B aw
OF 8B cd

7B chb
OF 8B aw
OF 8B cd

7Cch
OF 8Caw
OF 8Ccd

7Cch
OF 8Caw
OF 8Ccd

7D cb
OF 8D aw
OF 8D cd

AMDG64 Technology

Description

Jump if below or equal (CF=1o0rZF=1).

Jump if not above (CF=1or ZF=1).

Jump if not below or equal (CF =0 and ZF = 0).

Jump if above (CF =0 and ZF =0).

Jump if sign (SF=1).

Jump if not sign (SF = 0).

Jump if parity (PF=1).

Jump if parity even (PF=1).

Jump if not parity (PF = 0).

Jump if parity odd (PF = 0).

Jump if less (SF <> OF).

Jump if not greater or equal (SF <> OF).

Jump if not less (SF = OF).

Jec 167

AMDA

AMDG64 Technology

Mnemonic

JGE rel8off
JGE rel160ff
JGE rel320ff

JLE rel8off
JLE reli60ff
JLE rel320ff

ING rel8off
ING rel160ff
ING rel320ff

INLE relSoff
INLE reli6off
INLE ref320ff

JG rel8off
G rel160ff
G rel320ff

Related Instructions

Opcode

7D cb
OF 8D aw
OF 8D cd

TEcb
OF 8E aw
OF 8E cd

7Ech
OF 8E cw
OF 8E cd

7F cb
OF 8F aw
OF 8F cd

7F cb
OF 8F aw
OF 8F cd

JMP (Near), JMP (Far), JrCXZ

24594 Rev. 3.10 February 2005

Description

Jump if greater or equal (SF = OF).

Jump if less or equal (ZF =1 or SF<> OF).

Jump if not greater (ZF =1 or SF <> OF).

Jump if not less or equal (ZF = 0 and SF = OF).

Jump if greater (ZF = 0 and SF = OF).

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-canon-

#GP

ical.

168

Jec

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

JCXZ Jump if rCX Zero
JECXZ
JRCXZ

Checks the contents of the count register (rCX) and, if 0, jumps to the target
instruction located at the specified 8-bit relative offset. Otherwise, execution
continues with the instruction following the JrCXZ instruction.

The size of the count register (CX, ECX, or RCX) depends on the address-size
attribute of the JrCXZ instruction. Therefore, JRCXZ can only be executed in 64-bit
mode and JCXZ cannot be executed in 64-bit mode.

If the jump is taken, the signed displacement is added to the rIP (of the following
instruction) and the result is truncated to 16, 32, or 64 bits, depending on operand
size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-
bit displacement value to 64 bits before adding it to the RIP.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
JCXZ rel8off E3cb Jump short if the 16-bit count register (CX) is zero.
JECXZ rel8off E3 cb Jump short if the 32-bit count register (ECX) is zero.
JRCXZ rel8off E3 cb Jump short if the 64-bit count register (RCX) is zero.

Related Instructions
Jcc, JMP (Near), JMP (Far)
rFLAGS Affected

None

JrcXz 169

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-canon-
#GP ical

170 IrcXz

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

JMP (Near) Near Jump

Unconditionally transfers control to a new address without saving the current rIP
value. This form of the instruction jumps to an address in the current code segment
and is called a near jump. The target operand can specify a register, a memory
location, or a label.

If the JMP target is specified in a register or memory location, then a 16-, 32-, or 64-bit
rIP is read from the operand, depending on operand size. This rIP is zero-extended to
64 bits.

If the JMP target is specified by a displacement in the instruction, the signed
displacement is added to the rIP (of the following instruction), and the result is
truncated to 16, 32, or 64 bits depending on operand size. The signed displacement
can be 8 bits, 16 bits, or 32 bits, depending on the opcode and the operand size.

For near jumps in 64-bit mode, the operand size defaults to 64 bits. The E9 opcode
results in RIP = RIP + 32-bit signed displacement, and the FF /4 opcode results in RIP
= 64-bit offset from register or memory. No prefix is available to encode a 32-bit
operand size in 64-bit mode.

See JMP (Far) for information on far jumps—jumps to procedures located outside of
the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description

IMP relsoff EB cb Short jump with the target specified by an 8-bit signed
displacement.

IMP reli6off E9 av Near jump with the target specified by a 16-bit signed
displacement.

IMP rel320fF £9 d Near jump with the target specified by a 32-bit signed
displacement.

JMP reg/mem16 FF /4 Near jump with the target specified reqg/mem16.

JMP reg/mems32 FF /4 Near jump with the t.argfet speci_ﬁed reg/mem32.
(No prefix for encoding in 64-bit mode.)

JMP reg/mem64 FF /4 Near jump with the target specified req/mem64.

JMP (Near) 171

AMDA

AMDG64 Technology

Related Instructions

24594 Rev. 3.10 February 2005

JMP (Far), Jcc, JrCX
rFLAGS Affected
None.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X X X The target offset exceeded the code segment limit or was non-canon-
ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

172

JMP (Near)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

JMP (Far) Far Jump

Unconditionally transfers control to a new address without saving the current CS:rIP
values. This form of the instruction jumps to an address outside the current code
segment and is called a far jump. The operand specifies a target selector and offset.

The target operand can be specified by the instruction directly, by containing the far
pointer in the jmp far opcode itself, or indirectly, by referencing a far pointer in
memory. In 64-bit mode, only indirect far jumps are allowed, executing a direct far
jmp (opcode EA) will generate an undefined opcode exception.

In all modes, the target selector used by the instruction can be a code selector.
Additionally, the target selector can also be a call gate in protected mode, or a task
gate or TSS selector in legacy protected mode.

m Target is a code segment—Control is transferred to the target CS:rIP. In this case,
the target offset can only be a 16 or 32 bit value, depending on operand-size, and
is zero-extended to 64 bits. No CPL change is allowed.

m Target is a call gate—The call gate specifies the actual target code segment and off-
set, and control is transferred to the target CS:rIP. When jumping through a call
gate, the size of the target rIP is 16, 32, or 64 bits, depending on the size of the call
gate. If the target rIP is less than 64 bits, it's zero-extended to 64 bits. In long
mode, only 64-bit call gates are allowed, and they must point to 64-bit code seg-
ments. No CPL change is allowed.

m Target is a task gate or a TSS—If the mode is legacy protected mode, then a task
switch occurs. See “Hardware Task-Management in Legacy Mode” in volume 2 for
details about task switches. Hardware task switches are not supported in long
mode.

See JMP (Near) for information on near jumps—jumps to procedures located inside
the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description

Far jump direct, with the target specified by a far pointer

IMP FAR prtr 16:16 EAcd contained in the instruction. (Invalid in 64-bit mode.)

Far jump direct, with the target specified by a far pointer

IMPFAR pntri6:32 EAcp contained in the instruction. (Invalid in 64-bit mode.)

IMP (Far) 173

AMDA

AMDG64 Technology

Mnemonic Opcode
JMP FAR mem16:16 FF /5
JMP FAR mem16:32 FF /5

Action

// Far jumps (JMPF)

24594 Rev. 3.10 February 2005

Description

Far jump indirect, with the target specified by a far pointer in
memory.

Far jump indirect, with the target specified by a far pointer in
memory.

// See “Pseudocode Definitions” on page 49.

JMPF_START:

IF (REAL_MODE)
JMPF_REAL_OR_VIRTUAL

ELSIF (PROTECTED_MODE)
JMPF_PROTECTED

ELSE // (VIRTUAL_MODE)
JMPF_REAL_OR_VIRTUAL

JMPF_REAL_OR_VIRTUAL:

IF (OPCODE = jmpf [mem]) //JIMPF Indirect
{

temp_RIP =

READ_MEM.z [mem]

temp_CS = READ_MEM.w [mem+Z]

}

ELSE // (OPCODE = Jjmpf direct)

{

temp_RIP = z-sized offset specified in the instruction,
zero-extended to 64 bits
temp_CS = selector specified in the instruction

}

IF (temp_RIP>CS.1imit)
EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4
RIP = temp_RIP

EXIT

JMPF_PROTECTED:

IF (OPCODE = Jjmpf [mem]) // JIMPF Indirect
{

temp_offset =
temp_sel

READ_MEM.z [mem]
READ_MEM.w [mem+Z]

174

JMP (Far)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

}
ELSE // (OPCODE = jmpf direct)
{
IF (64BIT_MODE)
EXCEPTION [4fUD] // > jmpf direct’ is illegal in 64-bit mode

z-sized offset specified in the instruction,
zero-extended to 64 bits
temp_sel = selector specified in the instruction

temp_offset

}

temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)
// read descriptor, perform protection and type checks

IF (temp_desc.attr.type = “available_tss’)

TASK_SWITCH // using temp_sel as the target tss selector
ELSIF (temp_desc.attr.type = "taskgate’)
TASK_SWITCH // using the tss selector in the task gate as the

// target tss

ELSIF (temp_desc.attr.type = ’“code’)
// if the selector refers to a code descriptor, then
// the offset we read is the target RIP

temp_RIP = temp_offset
CS = temp_desc
IF ((!64BIT_MODE) && (temp_RIP > CS.1imit))
// temp_RIP can’t be non-canonical because
// it’s a 16- or 32-bit offset, zero-extended to 64 bits
{
EXCEPTION [#GP(0)]
}
RIP = temp_RIP
EXIT

ELSE

// (temp_desc.attr.type = “callgate’)

// if the selector refers to a call gate, then

// the target CS and RIP both come from the call gate
temp_RIP = temp_desc.offset

IF (LONG_MODE)
{
// in long mode, we need to read the 2nd half of a 16-byte call-gate
// from the gdt/1dt to get the upper 32 bits of the target RIP
temp_upper = READ_MEM.q [temp_sel+8]
IF (temp_upper’s extended attribute bits != 0)
EXCEPTION [#GP(temp_sel)] // Make sure the extended
// attribute bits are all zero.

temp_RIP = tempRIP + (temp_upper SHL 32)

IMP (Far) 175

AMDA

AMDG64 Technology

}

24594 Rev. 3.10 February 2005

// concatenate both halves of RIP

CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)
// set up new CS base, attr, Timits

IF ((

]

EXCEPTION [#GP
RIP = temp_RIP
EXIT

}

Related Instructions
JMP (Near), Jcc, JrCX

rFLAGS Affected

64BIT_MODE) && (temp_RIP is non-canonical)
(164BIT_MODE) && (temp_RIP > CS.1imit))
(0)]

None, unless a task switch occurs, in which case all flags are modified.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The far JUMP indirect opcode (FF /5) had a register operand.
X The far JUMP direct opcode (EA) was executed in 64-bit mode.
Segment not present, X The accessed code segment, call gate, task gate, or TSS was not
#NP (selector) present.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X X X The target offset exceeded the code segment limit or was non-canon-
ical.
X A null data segment was used to reference memory.
176 JMP (Far)

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X The target code segment selector was a null selector.
#GP
(selector) X A code, call gate, task gate, or TSS descriptor exceeded the descriptor
table limit.

X A segment selector’s Tl bit was set, but the LDT selector was a null
selector.

X The segment descriptor specified by the instruction was not a code
segment, task gate, call gate or available TSS in legacy mode, or not
a 64-bit code segment or a 64-bit call gate in long mode.

X The RPL of the non-conforming code segment selector specified by
the instruction was greater than the CPL, or its DPL was not equal to
the CPL.

X The DPL of the conforming code segment descriptor specified by the
instruction was greater than the CPL.

X The DPL of the callgate, taskgate, or TSS descriptor specified by the
instruction was less than the CPL or less than its own RPL.

X The segment selector specified by the call gate or task gate was a null
selector.

X The segment descriptor specified by the call gate was not a code seg-
ment in legacy mode or not a 64-bit code segment in long mode.

X The DPL of the segment descriptor specified the call gate was greater
than the CPL and it is a conforming segment.

X The DPL of the segment descriptor specified by the callgate was not
equal to the CPL and it is a non-conforming segment.

X The 64-bit call gate’s extended attribute bits were not zero.

X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

IMP (Far) 177

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LAHF Load Status Flags into AH Register

Loads the lower 8 bits of the rFLAGS register, including sign flag (SF), zero flag (ZF),
auxiliary carry flag (AF), parity flag (PF), and carry flag (CF), into the AH register.

The instruction sets the reserved bits 1, 3, and 5 of the rFLAGS register to 1, 0, and 0,
respectively, in the AH register.

The LAHF instruction can only be executed in 64-bit mode if supported by the
processor implementation. Check the status of ECX bit 0 returned by CPUID
extended function 8000_0001h to verify that the processor supports LAHF in 64-bit
mode.

Mnemonic Opcode Description

LAHF 9F Load the SF, ZF, AF, PF, and CF flags into the AH register.

Related Instructions

SAHF
rFLAGS Affected
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X Thisinstructionisnotsupportedin 64-bitmode, asindicated by ECX
bit 0 returned by CPUID standard function 8000_0001h.

178 LAHF

AMDA

24594 Rev. 3.10 February 2005

LDS
LES
LFS
LGS
LSS

AMDG64 Technology

Load Far Pointer

Loads a far pointer from a memory location (second operand) into a segment register
(mnemonic) and general-purpose register (first operand). The instruction stores the
16-bit segment selector of the pointer into the segment register and the 16-bit or 32-
bit offset portion into the general-purpose register. The operand-size attribute
determines whether the pointer is 32-bit or 48-bit.

These instructions load associated segment-descriptor information into the hidden

portion of the specified segment register.

Using LDS or LES in 64-bit mode generates an invalid-opcode exception.

Executing LFS, LGS, or LSS with a 64-bit operand size only loads a 32-bit general
purpose register and the specified segment register.

Mnemonic

LDS regi6, memi6:16

LDS reg32, mem1i6:32

LES regi6, mem1i6:16

LES reg32, mem16:32

LFS regi6, mem1i6:16
LFS reg32, mem1i6:32
LGS reg16, mem16:16
LGS reg32, mem16.32
LSS regi6, mem16:16
LSS reg32, mem1i6:32

Opcode

s /r

C5/r

Casr

Ca/r

OF B4 /r
OF B4 /r
OF B5 /r
OF B5 /r
OF B2 /r
OF B2 /r

Description

Load DS:reg16 with a far pointer from memory.
(Invalid in 64-bit mode.)

Load DS:reg32 with a far pointer from memory.

(Invalid in 64-bit mode.)

Load ES:reg16 with a far pointer from memory.
(Invalid in 64-bit mode.)

Load ES:reg32 with a far pointer from memory.
(Invalid in 64-bit mode.)

Load FS:reg16 with a far pointer from memory.
Load FS:reg32 with a far pointer from memory.

Load GS:reg16 with a far pointer from memory.

Load GS:reg32 with a far pointer from memory.

Load SS:regi6 with a far pointer from memory.

Load SS:reg32 with a far pointer from memory.

LxS

179

AMDA

AMDG64 Technology

Related Instructions

24594 Rev. 3.10 February 2005

None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The source operand was a register.

X LDS or LES was executed in 64-bit mode.

Segment not present, X The DS, ES, FS, or GS register was loaded with a non-null segment

#NP (selector) selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

Stack, #SS X The SS register was loaded with a non-null segment selector and the

(selector) segment was marked not present.

General protection, X X X A memory address exceeded a data segment limit or was non-canon-

#GP ical.

X A null data segment was used to reference memory.

General protection, X A segment register was loaded, but the segment descriptor exceeded
#GP the descriptor table limit.
(selector)

X A segment register was loaded and the segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in non-64-bit
mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL and the
segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was not a
writable data segment.

X The DS, ES, FS, or GS register was loaded and the segment pointed
to was a data or non-conforming code segment, but the RPL or CPL
was greater than the DPL.

X

The DS, ES, FS, or GS register was loaded and the segment pointed
to was not a data segment or readable code segment.

180

LxS

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

LxS

181

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LEA Load Effective Address

Computes the effective address of a memory location (second operand) and stores it in
a general-purpose register (first operand).

The address size of the memory location and the size of the register determine the
specific action taken by the instruction, as follows:

m If the address size and the register size are the same, the instruction stores the
effective address as computed.

m If the address size is longer than the register size, the instruction truncates the
effective address to the size of the register.

m If the address size is shorter than the register size, the instruction zero-extends
the effective address to the size of the register.

If the second operand is a register, an undefined-opcode exception occurs.

The LEA instruction is related to the MOV instruction, which copies data from a
memory location to a register, but LEA takes the address of the source operand,
whereas MOV takes the contents of the memory location specified by the source
operand. In the simplest cases, LEA can be replaced with MOV. For example:

lea eax, [ebx]

has the same effect as:

mov eax, ebx
However, LEA allows software to use any valid ModRM and SIB addressing mode for
the source operand. For example:

lea eax, [ebxtedi]

loads the sum of the EBX and EDI registers into the EAX register. This could not be
accomplished by a single MOV instruction.

The LEA instruction has a limited capability to perform multiplication of operands in
general-purpose registers using scaled-index addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register. Possible
values of multipliers are 2, 4, 8, 3, 5, and 9.

The LEA instruction is widely used in string-processing and array-processing to
initialize an index register (rSI or rDI) before performing string instructions such as

182 LEA

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MOVSx. It is also used to initialize the rBX register before performing the XLAT
instruction in programs that perform character translations. In data structures, the
LEA instruction can calculate addresses of operands stored in memory, and in
particular, addresses of array or string elements.

Mnemonic Opcode Description
LEA regi6, mem 8D /r Store effective address in a 16-bit register.
LEA reg32, mem 8D /r Store effective address in a 32-bit register.
LEA reg64, mem 8D /r Store effective address in a 64-bit register.

Related Instructions

MOV
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The source operand was a register.

LEA 183

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LEAVE Delete Procedure Stack Frame

Releases a stack frame created by a previous ENTER instruction. To release the
frame, it copies the frame pointer (in the rBP register) to the stack pointer register
(rSP), and then pops the old frame pointer from the stack into the rBP register, thus
restoring the stack frame of the calling procedure.

The 32-bit LEAVE instruction is equivalent to the following 32-bit operation:

MOV ESP,EBP
POP EBP

To return program control to the calling procedure, execute a RET instruction after
the LEAVE instruction.

In 64-bit mode, the LEAVE operand size defaults to 64 bits, and there is no prefix
available for encoding a 32-bit operand size.

Mnemonic Opcode Description

Set the stack pointer register SP to the value in the BP register

LEAVE 9 and pop B7.

Set the stack pointer register ESP to the value in the EBP register
LEAVE @ and pop EBP.
(No prefix for encoding this in 64-bit mode.)

Set the stack pointer register RSP to the value in the RBP register

LEAVE © and pop RBP.

Related Instructions
ENTER
rFLAGS Affected

None

184 LEAVE

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

LEAVE 185

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LFENCE Load Fence

Acts as a barrier to force strong memory ordering (serialization) between load
instructions preceding the LFENCE and load instructions that follow the LFENCE. A
weakly-ordered memory system allows hardware to reorder reads and writes between
the processor and memory. The LFENCE instruction guarantees that the system
completes all previous loads before executing subsequent loads.

The LFENCE instruction is weakly-ordered with respect to store instructions, data
and instruction prefetches, and the SFENCE instruction. Speculative loads initiated
by the processor, or specified explicitly using cache-prefetch instructions, can be
reordered around an LFENCE.

In addition to load instructions, the LFENCE instruction is strongly ordered with
respect to other LFENCE instructions, MFENCE instructions, and serializing
instructions.

Support for the LFENCE instruction is indicated when the SSE2 bit (bit 26) is set to 1
in EDX after executing CPUID standard function 1.

Mnemonic Opcode Description

LFENCE OF AE E8 Force strong ordering of (serialize) load operations.

Related Instructions

MFENCE, SFENCE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The LFENCE instruction is not supported as indicated by EDX bit 26
of CPUID standard function 1.

186 LFENCE

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

LODS Load String
LODSB

LODSW

LODSD

LODSQ

Copies the byte, word, doubleword, or quadword in the memory location pointed to by
the DS:rSI registers to the AL, AX, EAX, or RAX register, depending on the size of the
operand, and then increments or decrements the rSI register according to the state of
the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It
increments or decrements rSI by 1, 2, 4, or 8, depending on the number of bytes being
loaded.

The forms of the LODS instruction with an explicit operand address the operand at
seg:[rSI]. The value of seg defaults to the DS segment, but may be overridden by a
segment prefix. The explicit operand serves only to specify the type (size) of the value
being copied and the specific registers used.

The no-operands forms of the instruction always use the DS:[rSI] registers to point to
the value to be copied (they do not allow a segment prefix). The mnemonic determines
the size of the operand and the specific registers used.

The LODSx instructions support the REP prefixes. For details about the REP prefixes,
see “Repeat Prefixes” on page 10. More often, software uses the LODSx instruction
inside a loop controlled by a LOOPcc instruction as a more efficient replacement for
instructions like:

mov eax, dword ptr ds:[esi]
add esi, 4

The LODSQ instruction can only be used in 64-bit mode.

Mnemonic Opcode Description
LODS mem8 AC Load byte at DS:rSl into AL and then increment or decrement rSI.

LODS mem|6 AD Ir_SoIad word at DS:rSI into AX and then increment or decrement

Load doubleword at DS:rSl into EAX and then increment or

LODS mem32 AD decrement rSl.

LODSx 187

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Load quadword at DS:rSI into RAX and then increment or
LODS memo64 AD decrement rSl.
LODSB AC Load byte at DS:rSl into AL and then increment or decrement rSI.
LODSW AD Load the word at DS:rSl into AX and then increment or
decrement rSI.
LODSD AD Load doubleword at DS:rSl into EAX and then increment or
decrement rSI.
Load quadword at DS:rSI into RAX and then increment or
LODsQ AD decrement rSI.
Related Instructions
MOVSx, STOSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

188

LODSx

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

LOOP Loop
LOOPE

LOOPNE

LOOPNZ

LOOPZ

Decrements the count register (rCX) by 1, then, if rCX is not 0 and the ZF flag meets
the condition specified by the mnemonic, it jumps to the target instruction specified
by the signed 8-bit relative offset. Otherwise, it continues with the next instruction
after the LOOPcc instruction.

The size of the count register used (CX, ECX, or RCX) depends on the address-size
attribute of the LOOPcc instruction.

The LOOP instruction ignores the state of the ZF flag.

The LOOPE and LOOPZ instructions jump if rCX is not 0 and the ZF flag is set to 1. In
other words, the instruction exits the loop (falls through to the next instruction) if rCX
becomes 0 or ZF = 0.

The LOOPNE and LOOPNZ instructions jump if rCX is not 0 and ZF flag is cleared to
0. In other words, the instruction exits the loop if rCX becomes 0 or ZF = 1.

The LOOPcc instruction does not change the state of the ZF flag. Typically, the loop
contains a compare instruction to set or clear the ZF flag.

If the jump is taken, the signed displacement is added to the rIP (of the following
instruction) and the result is truncated to 16, 32, or 64 bits, depending on operand
size.

In 64-bit mode, the operand size defaults to 64 bits without the need for a REX prefix,
and the processor sign-extends the 8-bit offset before adding it to the RIP.

Mnemonic Opcode Description
LOOP rel8off E2cb Decrement rCX, then jump short if rCX is not .
LOOPE rel8off Elcb Decrement rCX, then jump short if rCX is not 0 and ZF is 1.
LOOPNE rel8off EO cb Decrement rCX, then Jump short if rCX is not 0 and ZF is 0.

LOOPcc 189

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
LOOPNZ rel8off B0 cb Decrement rCX, then Jump short if rCX is not 0 and ZF is 0.
LOOPZ rel8off E1ch Decrement rCX, then Jump short if rCX is not 0 and ZF is 1.
Related Instructions
None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-canon-
#GP ical.

190

LOOPcc

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MFENCE Memory Fence

Acts as a barrier to force strong memory ordering (serialization) between load and
store instructions preceding the MFENCE, and load and store instructions that follow
the MFENCE. A weakly-ordered memory system allows the hardware to reorder reads
and writes between the processor and memory. The MFENCE instruction guarantees
that the system completes all previous memory accesses before executing subsequent
accesses.

The MFENCE instruction is weakly-ordered with respect to data and instruction
prefetches. Speculative loads initiated by the processor, or specified explicitly using
cache-prefetch instructions, can be reordered around an MFENCE.

In addition to load and store instructions, the MFENCE instruction is strongly ordered
with respect to other MFENCE instructions, LFENCE instructions, SFENCE
instructions, serializing instructions, and CLFLUSH instructions.

Support for the MFENCE instruction is indicated when the SSE2 bit (bit 26) is set to 1
in EDX after executing CPUID with standard function 1.

Mnemonic Opcode Description

MFENCE OF AEFO Force strong ordering of (serialized) load and store operations.

Related Instructions

LFENCE, SFENCE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The MFENCE instruction is not supported as indicated by bit 26 of
CPUID standard function 1.

MFENCE 191

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

MOV Move

Copies an immediate value or the value in a general-purpose register, segment
register, or memory location (second operand) to a general-purpose register, segment
register, or memory location. The source and destination must be the same size (byte,
word, doubleword, or quadword) and cannot both be memory locations.

In opcodes A0 through A3, the memory offsets (called moffsets) are address sized. In
64-bit mode, memory offsets default to 64 bits. Opcodes A0-A3, in 64-bit mode, are the
only cases that support a 64-bit offset value. (In all other cases, offsets and
displacements are a maximum of 32 bits.) The B8 through BF (B8 +rq) opcodes, in 64-
bit mode, are the only cases that support a 64-bit immediate value (in all other cases,
immediate values are a maximum of 32 bits).

When reading segment-registers with a 32-bit operand size, the processor zero-extends
the 16-bit selector results to 32 bits. When reading segment-registers with a 64-bit
operand size, the processor zero-extends the 16-bit selector to 64 bits. If the
destination operand specifies a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector.

It is possible to move a null segment selector value (0000-0003h) into the DS, ES, FS,
or GS register. This action does not cause a general protection fault, but a subsequent
reference to such a segment does cause a #GP exception. For more information about
segment selectors, see “Segment Selectors and Registers” on page 82.

When the MOV instruction is used to load the SS register, the processor blocks
external interrupts until after the execution of the following instruction. This action
allows the following instruction to be a MOV instruction to load a stack pointer into
the ESP register (MOV ESP,val) before an interrupt occurs. However, the LSS
instruction provides a more efficient method of loading SS and ESP.

Attempting to use the MOV instruction to load the CS register generates an invalid
opcode exception (#UD). Use the far JMP, CALL, or RET instructions to load the CS
register.

To initialize a register to 0, rather than using a MOV instruction, it may be more
efficient to use the XOR instruction with identical destination and source operands.

192 mov

AMDA

24594 Rev. 3.10 February 2005

Mnemonic

MOV reqg/mem8, reg8

MOV reg/mem 16, reg16

MOV reg/mem32, reg32

MOV reg/memé64, reg64

MOV reg8, reqg/mem8

MOV regi6, reg/mem16

MOV reg32, req/mem32

MOV reg64, req/memé64

MOV reqg16/32/64/mem16, segReg

MOV segReg, reg/mem 16

MOV AL, moffset8
MOV AX, moffseti6
MOV EAX, moffset32

MOV RAX, moffseto4

MOV moffset8, AL
MOV moffseti6, AX
MOV moffset32, EAX
MOV moffset64, RAX
MOV reg8, imm8
MOV regi6, immi6
MOV reg32, imm32

Opcode

88/r

89/r

89/r

89/r

8A/r

8B /r

8B /r

8B /r

8C/r

8E/r

A0
Al
Al

Al

A3
A3
A3
BO +rb
B8 +w

B8 +rd

AMDG64 Technology

Description

Move the contents of an 8-bit register to an 8-bit destination
register or memory operand.

Move the contents of a 16-bit register to a 16-bit destination
register or memory operand.

Move the contents of a 32-bit register to a 32-bit destination
register or memory operand.

Move the contents of a 64-bit register to a 64-bit destination
register or memory operand.

Move the contents of an 8-bit register or memory operand to an
8-bit destination register.

Move the contents of a 16-bit register or memory operand to a
16-bit destination register.

Move the contents of a 32-bit register or memory operand to a
32-bit destination register.

Move the contents of a 64-bit register or memory operand to a
64-bit destination register.

Move the contents of a segment register to a 16-bit, 32-bit, or 64-
bit destination register or to a 16-bit memory operand.

Move the contents of a 16-bit register or memory operand to a
segment register.

Move 8-bit data at a specified memory offset to the AL register.
Move 16-bit data at a specified memory offset to the AX register.
Move 32-bit data at a specified memory offset to the EAX register.

Move 64-bit data at a specified memory offset to the RAX
register.

Move the contents of the AL register to an 8-bit memory offset.
Move the contents of the AX register to a 16-bit memory offset.
Move the contents of the EAX register to a 32-bit memory offset.
Move the contents of the RAX register to a 64-bit memory offset.
Move an 8-bit immediate value into an 8-bit register.

Move a 16-bit immediate value into a 16-bit register.

Move an 32-bit immediate value into a 32-bit register.

mov 193

AMDA

AMDG64 Technology

Mnemonic

MOV reg64, immé64

MOV reg/mem8, imm8

MOV reg/mem 16, imm16
MOV reg/mem32, imm32
MOV reg/memé64, imm32

Related Instructions

Opcode
B8 +rqg

6/0

C7/0

C7/o

C7/0

24594 Rev. 3.10 February 2005

Description
Move an 64-bit immediate value into a 64-bit register.

Move an 8-bit immediate value to an 8-bit register or memory
operand.

Move a 16-bit immediate value to a 16-bit register or memory
operand.

Move a 32-bit immediate value to a 32-bit register or memory
operand.

Move a 32-bit signed immediate value to a 64-bit register or
memory operand.

MOV(CRn), MOV(DRn), MOVD, MOVSX, MOVZX, MOVSXD, MOVSx

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X An attempt was made to load the CS register.
Segment not present, X The DS, ES, FS, or GS register was loaded with a non-null segment
#NP (selector) selector and the segment was marked not present.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
Stack, #SS X The SS register was loaded with a non-null segment selector, and the
(selector) segment was marked not present.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

194

mov

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X A segment register was loaded, but the segment descriptor exceeded
#GP the descriptor table limit.
(selector)

X A segment register was loaded and the segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in non-64-bit
mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL and the
segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was not a
writable data segment.

X The DS, ES, FS, or GS register was loaded and the segment pointed
to was a data or non-conforming code segment, but the RPL or CPL
was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment pointed
to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

mov 195

AMDA

AMDG64 Technology

MOVD

24594 Rev. 3.10 February 2005

Move Doubleword or Quadword

Moves a 32-bit or 64-bit value in one of the following ways:

m from a 32-bit or 64-bit general-purpose register or memory location to the low-
order 32 or 64 bits of an XMM register, with zero-extension to 128 bits

m from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose
register or memory location

m from a 32-bit or 64-bit general-purpose register or memory location to the low-
order 32 bits (with zero-extension to 64 bits) or the full 64 bits of an MMX register

m from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit
general-purpose register or memory location

Mnemonic

MOVD xmm, reg/mem32

MOVD xmm, reg/mem64

MOVD reg/mem32, xmm

MOVD reg/mem64, xmm

MOVD mmx, reg/mem32

MOVD mmx, reg/memé64

MOVD reg/mem32, mmx

MOVD reg/mem64, mmx

Opcode

66 OF 6E /1

66 OF 6E /r

66 OF 7E /r

66 OF 7E /r

OF 6E /r

OF 6E /r

OF 7E/r

OF 7E/r

Description

Move 32-bit value from a general-purpose register or 32-bit
memory location to an XMM register.

Move 64-bit value from a general-purpose register or 64-bit
memory location to an XMM register.

Move 32-bit value from an XMM register to a 32-bit general-
purpose register or memory location.

Move 64-bit value from an XMM register to a 64-bit general-
purpose register or memory location.

Move 32-bit value from a general-purpose register or 32-bit
memory location to an MMX register.

Move 64-bit value from a general-purpose register or 64-bit
memory location to an MMX register.

Move 32-bit value from an MMX register to a 32-bit general-
purpose register or memory location.

Move 64-bit value from an MMX register to a 64-bit general-
purpose register or memory location.

The diagrams in Figure 3-7 on page 197 illustrate the operation of the MOVD

instruction.

196

mMovD

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Xxmm reg/mem32
127 23 v 0 31 0
: | | []
|
xmm reg/meme64
127 64 63 v 0 63 0
0 | | |
with REX prefix
reg/mem32 xmm
All operations 310v 0 127 32 31 0
e | || | |
|
reg/mem64 Xmm
63 v 0 127 64 63 0

with REX prefix

mmx reg/mem32
63 32 31 ¢ 0 3! 0
[o] | -
|
mmx reg/mem64
e 4 0 63 0
with REX prefix
reg/mem32 mmx
3 ¢ 0 63 32 31 0
|
reg/mem64 mimx
B! 0 63 0
with REX prefix movdeps

Figure 3-7. MOVD Instruction Operation

movD 197

AMDA

AMDG64 Technology

Related Instructions

24594 Rev. 3.10 February 2005

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions (All Modes)

Virtual
Exception Real | 8086 | Protected Description
Invalid opcode, #UD X X X The MMX instructions are not supported, as indicated by
EDX bit 23 of CPUID standard function 1.
X X X The SSE2 instructions are not supported, as indicated by EDX
bit 26 of CPUID standard function 1.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The instruction used XMM registers while CR4.0SFXSR=0.
Device not available, X X X The task-switch bit (TS) of CRO was set to 1.
#NM
Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.
General protection, #GP | X X X A memory address exceeded a data segment limit or was
non-canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
x87 floating-point excep- | X X X An x87 floating-point exception was pending and the
tion pending, #MF instruction referenced an MMX register.
Alignment check, #AC X X An unaligned memory reference was performed while align-
ment checking was enabled.
198 mMovD

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MOVMSKPD Extract Packed Double-Precision Floating-Point
Sign Mask

Moves the sign bits of two packed double-precision floating-point values in an XMM
register (second operand) to the two low-order bits of a general-purpose register (first
operand) with zero-extension.

The MOVMSKPD instruction is an SSE2 instruction; Check the status of EDX bit 26 of
CPUID standard function 1 to verify that the processor supports this function.

Mnemonic Opcode Description
MOVMSKPD reg32, xmm 66 0F 50,7 Move sign bits 127 and 63 in an XMM register to a 32-bit general-
purpose register.
reg32 xmm
3] 1*lo 127 63 0
o] | |
copy sign ‘
‘ copy sign

movmskpd.eps

Related Instructions
MOVMSKPS, PMOVMSKB
rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPD 199

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SSE2 instructions are not supported, as indicated by EDX
bit 26 of CPUID standard function 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.
X X X The emulate bit (EM) of CRO was set to 1.
Device not available, X X X The task-switch bit (TS) of CRO was set to 1.

#NM

200

MOVMSKPD

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MOVMSKPS Extract Packed Single-Precision Floating-Point
Sign Mask

Moves the sign bits of four packed single-precision floating-point values in an XMM
register (second operand) to the four low-order bits of a general-purpose register (first
operand) with zero-extension.

The MOVMSKPD instruction is an SSE2 instruction; Check the status of EDX bit 26 of
CPUID standard function 1 to verify that the processor supports this function.

Mnemonic Opcode Description

MOVMSKPS reg32, xmim OF 50 /r Move sign bits 127, 95, 63, 31 in an XMM register to a 32-bit
general-purpose register.

reg32 Xmm

31 0

——

127 95 63 3]
|l | | |
| | | |

copy sign copy sign copy sign copy sign

movmskps.eps

Related Instructions
MOVMSKPD, PMOVMSKB
rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPS 201

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SSE2 instructions are not supported, as indicated by EDX
bit 26 of CPUID extended function 1.
X X X The operating-system FXSAVE/FXRSTOR support bit (OSFXSR)
of CR4 was cleared to 0.
X X X The emulate bit (EM) of CRO was set to 1.
Device not available, X X X The task-switch bit (TS) of CRO was set to 1.
#NM
202 MOVMSKPS

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MOVNTI Move Non-Temporal Doubleword or Quadword

Stores a value in a 32-bit or 64-bit general-purpose register (second operand) in a
memory location (first operand). This instruction indicates to the processor that the
data is non-temporal and is unlikely to be used again soon. The processor treats the
store as a write-combining (WC) memory write, which minimizes cache pollution. The
exact method by which cache pollution is minimized depends on the hardware
implementation of the instruction. For further information, see “Memory
Optimization” in Volume 1.

The MOVNTI instruction is weakly-ordered with respect to other instructions that
operate on memory. Software should use an SFENCE instruction to force strong
memory ordering of MOVNTI with respect to other stores.

Support for the MOVNTI instruction is indicated when the SSE2 bit (bit 26) is set to 1
in EDX after executing CPUID standard function 1.

Mnemonic Opcode Description

Stores a 32-bit general-purpose register value into a 32-bit

MOVNTI mem32, reg32 0P/ memory location, minimizing cache pollution.

Stores a 64-bit general-purpose register value into a 64-bit

MOVNTI mem64, reg64 OF G3 /r : vl :
memory location, minimizing cache pollution.

Related Instructions

MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTQ

rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SSE2 instructions are not supported, as indicated by EDX
bit 26 of CPUID standard function 1.
Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

MOVNTI 203

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
General protection, #GP | X X X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.
X The destination operand was in a non-writable segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while align-
ment checking was enabled.

204 MOVNTI

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MOVS Move String
MOVSB

MOVSW

MOVSD

MOVSQ

Moves a byte, word, doubleword, or quadword from the memory location pointed to by
DS:rSI to the memory location pointed to by ES:rDI, and then increments or
decrements the rSI and rDI registers according to the state of the DF flag in the
rFLAGS register.

If the DF flag is 0, the instruction increments both pointers; otherwise, it decrements
them. It increments or decrements the pointers by 1, 2, 4, or 8, depending on the size
of the operands.

The forms of the MOVSx instruction with explicit operands address the first operand
at seg:[rSI]. The value of seg defaults to the DS segment, but can be overridden by a
segment prefix. These instructions always address the second operand at ES:[rDI] (ES
may not be overridden). The explicit operands serve only to specify the type (size) of
the value being moved.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to
point to the value to be moved (they do not allow a segment prefix). The mnemonic
determines the size of the operands.

Do not confuse this MOVSD instruction with the same-mnemonic MOVSD (move
scalar double-precision floating-point) instruction in the 128-bit media instruction set.
Assemblers can distinguish the instructions by the number and type of operands.

The MOVSx instructions support the REP prefixes. For details about the REP
prefixes, see “Repeat Prefixes” on page 10.

Mnemonic Opcode Description
MOVS mems, mems A Move byte at DS:rSI to ES:rDI, and then increment or decrement
rSl and rDI.
MOVS mem 16, mem6 A5 Move word at DS:rSl to ES:rDI, and then increment or decrement
rSl and rDI.
MOVS mem32, mem32 A5 Move doubleword at DS:rSI to ES:rDl, and then increment or

decrement rSl and rDI.

MOVsx 205

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Move quadword at DS:rSI to ES:rDI, and then increment or
MOVS memb4, mem64 A5 decrement rSl and rDI.
MOVSB A Move byte at DS:rSl to ES:rDI, and then increment or decrement
rSland rDI.
Move word at DS:rSl to ES:rDI, and then increment or decrement
MOVSW A5 rSland rDI.
MOVSD AS Move doubleword at DS:rSI to ES:rDI, and then increment or
decrement rSl and rDI.
Move quadword at DS:rSI to ES:rDI, and then increment or
MOvsQ A5 decrement rSl and rDI.
Related Instructions
MOV, LODSx, STOSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

206

MOVsx

AMDA

24594 Rev. 3.10 February 2005

MOVSX

AMDG64 Technology

Move with Sign-Extension

Copies the value in a register or memory location (second operand) into a register
(first operand), extending the most significant bit of an 8-bit or 16-bit value into all
higher bits in a 16-bit, 32-bit, or 64-bit register.

Mnemonic Opcode Description
Move the contents of an 8-bit register or memory location to a
MOVSX reg16, reg/mems OF BE/r 16-bit register with sign extension.
Move the contents of an 8-bit register or memory location to a
MOVSK reg32, reg/mems OF BE/F 32-bit register with sign extension.
Move the contents of an 8-bit register or memory location to a
MOVSX reg64, reg/mems OF BE/r 64-bit register with sign extension.
Move the contents of an 16-bit register or memory location to a
MOVSX regs2, reg/mem16 OF BF /f 32-bit register with sign extension.
Move the contents of an 16-bit register or memory location to a
MOVSX reg64, reg/mem6 OF BF/r 64-bit register with sign extension.
Related Instructions
MOVSXD, MOVZX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

mMovsx 207

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

MOVSXD Move with Sign-Extend Doubleword

Copies the 32-bit value in a register or memory location (second operand) into a 64-bit
register (first operand), extending the most significant bit of the 32-bit value into all
higher bits of the 64-bit register.

This instruction requires the REX prefix 64-bit operand size bit (REX.W) to be setto 1
to sign-extend a 32-bit source operand to a 64-bit result. Without the REX operand-
size prefix, the operand size will be 32 bits, the default for 64-bit mode, and the source
is zero-extended into a 64-bit register. With a 16-bit operand size, only 16 bits are
copied, without modifying the upper 48 bits in the destination.

This instruction is available only in 64-bit mode. In legacy or compatibility mode this
opcode is interpreted as ARPL.

Mnemonic Opcode Description

Move the contents of a 32-bit register or memory operand to a

MOVSXD reg64, reg/mems32 63/1 64-bit register with sign extension.

Related Instructions

MOVSX, MOVZX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X A memory address was non-canonical.
General protection, X A memory address was non-canonical.
#GP
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment
checking was enabled.

208 MOVSXD

AMDA

24594 Rev. 3.10 February 2005

MovzX

AMDG64 Technology

Move with Zero-Extension

Copies the value in a register or memory location (second operand) into a register
(first operand), zero-extending the value to fit in the destination register. The
operand-size attribute determines the size of the zero-extended value.

Mnemonic Opcode Description
Move the contents of an 8-bit register or memory operand to a
MOVZX reg 16, reg/mems OF Bo/r 16-bit register with zero-extension.
Move the contents of an 8-bit register or memory operand to a
MOVZX reg32, reg/mems OF B6,/1 32-bit register with zero-extension.
Move the contents of an 8-bit register or memory operand to a
MOVZX reg64, reg/mems OF Bo/r 64-bit register with zero-extension.
Move the contents of a 16-bit register or memory operand to a
MOVZX regs2, reg/mem16 OF B7/1 32-bit register with zero-extension.
Move the contents of a 16-bit register or memory operand to a
MOVZX reg64, reg/mem6 OF B7/r 64-bit register with zero-extension.
Related Instructions
MOVSXD, MOVSX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

movzx 209

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

MUL Unsigned Multiply

Multiplies the unsigned byte, word, doubleword, or quadword value in the specified
register or memory location by the value in AL, AX, EAX, or RAX and stores the result
in AX, DX:AX, EDX:EAX, or RDX:RAX (depending on the operand size). It puts the
high-order bits of the product in AH, DX, EDX, or RDX.

If the upper half of the product is non-zero, the instruction sets the carry flag (CF) and
overflow flag (OF) both to 1. Otherwise, it clears CF and OF to 0. The other arithmetic
flags (SF, ZF, AF, PF) are undefined.

Mnemonic Opcode Description

Multiplies an 8-bit register or memory operand by the contents

MUL reg/mem F6 /4 of the AL register and stores the result in the AX register.

WL egmenis Tp s obtiemer ey cpenidty e crens o
oL g p s ooy opsondly e s
MUL reg/memé4 F7 /4 Multiplies a 64-bit register or memory operand by the contents

of the RAX register and stores the result in the RDX:RAX register.

Related Instructions

DIV

210 MUL

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M U U U U M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference is performed while alignment
checking was enabled.

MUL 211

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

NEG Two’s Complement Negation

Performs the two’s complement negation of the value in the specified register or
memory location by subtracting the value from 0. Use this instruction only on signed
integer numbers.

If the value is 0, the instruction clears the CF flag to 0; otherwise, it sets CF to 1. The
OF, SF, ZF, AF, and PF flag settings depend on the result of the operation.

The forms of the NEG instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
Performs a two's complement negation on an 8-bit register or
NEG reg/memé F6/3 memory operand.
NEG reg/mem16 F7/3 Performs a two's complement negation on a 16-bit register or
memory operand.
Performs a two's complement negation on a 32-bit register or
NEG reg/mem32 F7/3 memory operand.
NEG reg/mem64 F7/3 Performs a two's complement negation on a 64-bit register or

memory operand.

Related Instructions

AND, NOT, OR, XOR

212 NEG

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

rFLAGS Affected
ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M| M| M| M
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand is in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

NEG 213

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

NOP No Operation

Does nothing. This one-byte instruction increments the rIP to point to next instruction
in the instruction stream, but does not affect the machine state in any other way.

The NOP instruction is an alias for XCHG rAX, rAX.

Mnemonic Opcode Description

NOP 90 Performs no operation.

Related Instructions
None

rFLAGS Affected
None

Exceptions

None

214 NOP

AMDA

24594 Rev. 3.10 February 2005

NOT

AMDG64 Technology

One’s Complement Negation

Performs the one’s complement negation of the value in the specified register or
memory location by inverting each bit of the value.

The memory-operand forms of the NOT instruction support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
NOT reg/mem8 F6 /2 Complements the bits in an 8-bit register or memory operand.
NOT reg/mem16 F7 /2 Complements the bits in a 16-bit register or memory operand.
NOT reqg/mem32 F7/2 Complements the bits in a 32-bit register or memory operand.
NOT reg/mem64 F7 /2 Compliments the bits in a 64-bit register or memory operand.
Related Instructions
AND, NEG, OR, XOR
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference is performed while alignment
checking was enabled.

NOT 215

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

OR Logical OR

Performs a logical OR on the bits in a register, memory location, or immediate value
(second operand) and a register or memory location (first operand) and stores the
result in the first operand location. The two operands cannot both be memory
locations.

If both corresponding bits are 0, the corresponding bit of the result is 0; otherwise, the
corresponding result bit is 1.

The forms of the OR instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
ORAL, imm8 0oCib OR the contents of AL with an immediate 8-bit value.
OR AX, imm16 0D iw OR the contents of AX with an immediate 16-bit value.
OR EAX, imm32 0D id OR the contents of EAX with an immediate 32-bit value.
OR RAX. imm32 oD id \(;I‘Qutse contents of RAX with a sign-extended immediate 32-bit
OR reg/mem8, imm8 801 ib OR the contents of an 8-bit register or memory operand and an
immediate 8-bit value.
: - OR the contents of a 16-bit register or memory operand and an
OR reg/mem16, imm16 81/Viw immediate 16-bit value.
OR reg/mem32, imm32 81 /1id OR the contents of a 32-bit register or memory operand and an

immediate 32-bit value.

OR the contents of a 64-bit register or memory operand and

OR reg/mem64, imm32 81/1id sign-extended immediate 32-bit value.

ORregmens o Qe nsofs bl cptr o memonyoernd nd
ORegimens, mns sspip QR onerioo o2 b e mem pendnds
ORegmers imng ssjip Qe rsofo 645t s o meron cpendnds
OR reg/mem, reg8 08 /r OR the contents of an 8-bit register or memory operand with the

contents of an 8-bit register.

216 OR

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Mnemonic Opcode Description

OR the contents of a 16-bit register or memory operand with the

ORreg/mem16, reg16 09/1 contents of a 16-bit register.

OR reg/mems32, reg32 09,/ gﬁ]gr?tg%?taer;t;-(t))];targgzi-stt)ietr.regmer or memory operand with the
OR reg/memé4, reg64 09 /r gﬁgﬁtg%r;tsrgi_ggtarggi-sli(iet[register or memory operand with the
OR reg8, reg/mems 0A OR the contents of an 8-bit register with the contents of an 8-bit

register or memory operand.

OR the contents of a 16-bit register with the contents of a 16-bit

OR reg16, reg/mem 16 0B/r register or memory operand.

OR reg32, reg/mem32 0B /r OR the contents of a 32-bit register with the contents of a 32-bit
register or memory operand.

OR reg64, reg/memé4 0B /r OR the contents of a 64-bit register with the contents of a 64-bit

register or memory operand.

The following chart summarizes the effect of this instruction:

X Y XORY
0 0 0
0 1 1
1 0 1
1 1 1

Related Instructions

AND, NEG, NOT, XOR

OR 217

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
0 M | M U M 0
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

218 OR

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

ouT Output to Port

Copies the value from the AL, AX, or EAX register (second operand) to an I/O port
(first operand). The port address can be a byte-immediate value (00h to FFh) or the
value in the DX register (0000h to FFFFh). The source register used determines the
size of the port (8, 16, or 32 bits).

If the operand size is 64 bits, OUT only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUT checks the I/O
permission bitmap in the TSS before allowing access to the I/O port. See Volume 2 for
details on the TSS I/O permission bitmap.

Mnemonic Opcode Description

Output the byte in the AL register to the port specified by an 8-bit

OUT imms, AL E6 b . ,
immediate value.

Output the word in the AX register to the port specified by an 8-

OUT immé, AX E7ib bit immediate value.

OUT imm8, EAX E7ih S;J;[?]Ué -ttr)]ii icri]?rtTJ]télgi\g/t(Jerii/ailrl\J 2"16 EAX register to the port specified
OUT DX, AL EE Output byte in AL to the output port specified in DX.

OUT DX, AX EF Output word in AX to the output port specified in DX.

OUT DX, EAX EF Output doubleword in EAX to the output port specified in DX.

Related Instructions
IN, INSx, OUTSx
rFLAGS Affected

None

our 219

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X One or more I/O permission bits were set in the TSS for the accessed
#GP port.
X The CPL was greater than the IOPL and one or more I/O permission
bits were set in the TSS for the accessed port.
Page fault (#PF) X X A page fault resulted from the execution of the instruction.

220

our

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

ouTS Output String
OUTSB

ouUTSW

OUTSD

Copies data from the memory location pointed to by DS:rSI to the I/O port address
(0000h to FFFFh) specified in the DX register, and then increments or decrements the
rSI register according to the setting of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It
increments or decrements the pointer by 1, 2, or 4, depending on the size of the value
being copied.

The OUTSx instruction uses an explicit memory operand (second operand) to
determine the type (size) of the value being copied, but always uses DS:rSI for the
location of the value to copy. The explicit register operand specifies the I/O port
address and must always be DX.

The no-operands forms of the instruction use the DS:[rSI] register pair to point to the
data to be copied and the DX register as the destination. The mnemonic specifies the
size of the I/O port and the type (size) of the value being copied.

The OUTSx instruction supports the REP prefix. For details about the REP prefix, see
“Repeat Prefixes” on page 10.

If the operand size is 64-bits, OUTS only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUTSx checks the I/O
permission bitmap in the TSS before allowing access to the I/O port. See Volume 2 for
details on the TSS I/O permission bitmap.

Mnemonic Opcode Description

Output the byte in DS:rSl to the port specified in DX, then

OUTS DX, mem8 6E .
increment or decrement rSl.

Output the word in DS:rSI to the port specified in DX, then

OUTS DX, memT6 oF increment or decrement rSl.

Output the doubleword in DS:rSl to the port specified in DX, then

OUTS DX, mem32 6F .
increment or decrement rSl.

ouTsx 221

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Output the byte in DS:rSl to the port specified in DX, then
OUTsB b increment or decrement rSl.
OUTSW oF Output the word in DS:rSl to the port specified in DX, then
increment or decrement rSl.
Output the doubleword in DS:rSl to the port specified in DX, then
OUTSD oF increment or decrement rSl.
Related Instructions
IN, INSx, OUT
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
X One or more I/0 permission bits were set in the TSS for the accessed
port.
X The CPL was greater than the IOPL and one or more I/O permission
bits were set in the TSS for the accessed port.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference is performed while alignment
checking was enabled.

222

0oUTSx

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

POP Pop Stack

Copies the value pointed to by the stack pointer (SS:rSP) to the specified register or
memory location and then increments the rSP by 2 for a 16-bit pop, 4 for a 32-bit pop,
or 8 for a 64-bit pop.

The operand-size attribute determines the amount by which the stack pointer is
incremented (2,4 or 8 bytes). The stack-size attribute determines whether SP, ESP, or
RSP is incremented.

For forms of the instruction that load a segment register (POP DS, POP ES, POP FS,
POP GS, POP SS), the source operand must be a valid segment selector. When a
segment selector is popped into a segment register, the processor also loads all
associated descriptor information into the hidden part of the register and validates it.

It is possible to pop a null segment selector value (0000-0003h) into the DS, ES, FS, or
GS register. This action does not cause a general protection fault, but a subsequent
reference to such a segment does cause a #GP exception. For more information about
segment selectors, see “Segment Selectors and Registers” on page 82.

In 64-bit mode, the POP operand size defaults to 64 bits and there is no prefix
available to encode a 32-bit operand size. Using POP DS, POP ES, or POP SS
instruction in 64-bit mode generates an invalid-opcode exception.

This instruction cannot pop a value into the CS register. The RET (Far) instruction
performs this function.

Mnemonic Opcode Description
POP reg/mem1i6 8F /0 Pop the top of the stack into a 16-bit register or memory location.
Pop the top of the stack into a 32-bit register or memory location.
POP reg/mem32 8F/0 (No prefix for encoding this in 64-bit mode.)
POP reg/mem64 8F /0 Pop the top of the stack into a 64-bit register or memory location.
POP regi6 58 +w Pop the top of the stack into a 16-bit register.

Pop the top of the stack into a 32-bit register.

POP reg32 58 +d (No prefix for encoding this in 64-bit mode.)
POP reg64 58 +rq Pop the top of the stack into a 64-bit register.
POP DS I Pop the top of the stack into the DS register.

(Invalid in 64-bit mode.)

poP 223

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Pop the top of the stack into the ES register.
POP ES 07 (Invalid in 64-bit mode.)
Pop the top of the stack into the SS register.

POP 35 17 (Invalid in 64-bit mode.)

POP FS OF Al Pop the top of the stack into the FS register.

POP GS OF A9 Pop the top of the stack into the GS register.
Related Instructions
PUSH
rFLAGS Affected
None
Exceptions

Virtual
Exception Real | 8086 |Protected Cause of Exception

Invalid opcode, #UD X POP DS, POP ES, or POP SS was executed in 64-bit mode.

Segment not present, X The DS, ES, FS, or GS register was loaded with a non-null segment

#NP (selector) selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-

canonical.

Stack, #SS X The SS register was loaded with a non-null segment selector and the

(selector) segment was marked not present.

General protection, X X X A memory address exceeded a data segment limit or was non-canon-

#GP ical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

224

POP

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X A segment register was loaded and the segment descriptor exceeded
#GP the descriptor table limit.
(selector)
X A segment register was loaded and the segment selector’s Tl bit was
set, but the LDT selector was a null selector.
X The SS register was loaded with a null segment selector in non-64-bit
mode or while CPL = 3.
X The SS register was loaded and the segment selector RPL and the
segment descriptor DPL were not equal to the CPL.
X The SS register was loaded and the segment pointed to was a not a
writable data segment.
X The DS, ES, FS, or GS register was loaded and the segment pointed
to was a data or non-conforming code segment, but the RPL or the
CPL was greater than the DPL.
X The DS, ES, FS, or GS register was loaded and the segment pointed
to was not a data segment or readable code segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

poP 225

AMDA

AMDG64 Technology

24594 Rev. 3.10 February 2005

POPA POP All GPRs

POPAD

Pops words or doublewords from the stack into the general-purpose registers in the
following order: eDI, eSI, eBP, eSP (image is popped and discarded), eBX, eDX, eCX,
and eAX. The instruction increments the stack pointer by 16 or 32, depending on the

operand size.

Using the POPA or POPAD instructions in 64-bit mode generates an invalid-opcode

exception.

Mnemonic Opcode
POPA 61
POPAD 61

Related Instructions

Description

Pop the D, SI, BP, SP, BX, DX, CX, and AX registers.
(Invalid in 64-bit mode.)

Pop the EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX registers.
(Invalid in 64-bit mode.)

PUSHA, PUSHAD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode (#UD) X This instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

226

POPAx

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

POPF POP to rFLAGS
POPFD
POPFQ

Pops a word, doubleword, or quadword from the stack into the rfLAGS register and
then increments the stack pointer by 2, 4, or 8, depending on the operand size.

In protected or real mode, all the non-reserved flags in the rFLAGS register can be
modified, except the VIP, VIF, and VM flags, which are unchanged. In protected mode,
at a privilege level greater than 0 the IOPL is also unchanged. The instruction alters
the interrupt flag (IF) only when the CPL is less than or equal to the IOPL.

In virtual-8086 mode, if IOPL field is less than 3, attempting to execute a POPFx or
PUSHFx instruction while VME is not enabled, or the operand size is not 16-bit,
generates a #GP exception.

In 64-bit mode, this instruction defaults to a 64-bit operand size; there is no prefix
available to encode a 32-bit operand size.

Mnemonic Opcode Description
POPF D Pop a word from the stack into the FLAGS register.
Pop a double word from the stack into the EFLAGS register. (No

POPFD D prefix for encoding this in 64-bit mode.)
POPFQ 9D Pop a quadword from the stack to the RFLAGS register.
Action

// See “Pseudocode Definitions” on page 49.
POPF_START:

IF (REAL_MODE)
POPF_REAL

ELSIF (PROTECTED_MODE)
POPF_PROTECTED

ELSE // (VIRTUAL_MODE)
POPF_VIRTUAL

POPF_REAL:

POP.v temp_RFLAGS

POPFx 227

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged

// RF cleared
EXIT

POPF_PROTECTED:

POP.v temp_RFLAGS
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
// I0PL changed only if (CPL=0)
// IF changed only if (CPL<=0l1d_RFLAGS.IOPL)

// RF cleared
EXIT

POPF_VIRTUAL:
IF (RFLAGS.IOPL=3)
{

POP.v temp_RFLAGS
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged
// RF cleared
EXIT
}
ELSIF ((CR4.VME=1) && (OPERAND_SIZE=16))
{
POP.w temp_RFLAGS
IF (((temp_RFLAGS.IF=1) && (RFLAGS.VIP=1)) || (temp_RFLAGS.TF=1))
EXCEPTION [#GP(0)]
// notify the virtual-mode-manager to delijver
// the task’s pending interrupts
RFLAGS.w = temp_RFLAGS // IF,I0PL unchanged
// RFLAGS.VIF=temp_RFLAGS.IF
// RF cleared
EXIT
}
ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME=0) || (OPERAND_SIZE!=16)))
EXCEPTION [#GP(0)]

Related Instructions

PUSHF, PUSHFD, PUSHFQ

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M| M 0 M M M M M M M M M M M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: giz‘s 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

228 POPFx

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X The I/O privilege level was less than 3 and one of the following con-
#GP ditions was true:

* CR4.VME was 0.
* The effective operand size was 32-bit.
* Both the original EFLAGS.VIP and the new EFLAGS.IF bits were

set.
* The new EFLAGS.TF bit was set.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

POPFx 229

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
PREFETCH Prefetch L1 Data-Cache Line
PREFETCHW

PREFETCH and PREFETCHW are 3DNow!™ instructions. They load a cache line into
the L1 data cache from the specified memory address. The PREFETCH instruction
loads a cache line even if the memS8 address is not aligned with the start of the line. If
a cache hit occurs, or if a memory fault is detected, no bus cycle is initiated, and the
instruction is treated as a NOP.

The PREFETCHW instruction loads the prefetched line and sets the cache-line state
to Modified, in anticipation of subsequent data writes to the line. The PREFETCH
instruction, by contrast, typically (depending on hardware implementation) sets the
cache-line state to Exclusive.

The opcodes for the instructions include the ModRM byte, and only the memory form
of ModRM is valid. The register form of ModRM causes an invalid-opcode exception.
Because there is no destination register, the three destination register field bits of the
ModRM byte define the type of prefetch to be performed. The bit patterns 000b and
001b define the PREFETCH and PREFETCHW instructions, respectively. All other
bit patterns are reserved for future use.

The reserved PREFETCH types do not result in an invalid-opcode exception if
executed. Instead, for forward compatibility with future processors that may
implement additional forms of the PREFETCH instruction, all reserved PREFETCH
types are implemented as synonyms of the basic PREFETCH type (the PREFETCH
instruction with type 000b).

The operation of these instructions is implementation-dependent. The processor
implementation can ignore or change these instructions. The size of the cache line
also depends on the implementation, with a minimum size of 32 bytes. For details on
the use of this instruction, see the data sheet or other software-optimization
documentation relating to particular hardware implementations.

These instructions are 3DNow! instructions; check the status of EDX bit 31 of CPUID
extended function 8000_0001h; check EDX bit 25 of CPUID extended function

8000_0001h to verify that the processor supports long mode.

230 PREFETCHx

AMDA

24594 Rev. 3.10 February 2005

Mnemonic Opcode
PREFETCH mem8 0F 0D /0
PREFETCHW mem8 OF 0D /1

Related Instructions

AMDG64 Technology

Description
Prefetch processor cache line into L1 data cache.

Prefetch processor cache line into L1 data cache and mark it
modified.

PREFETCHIevel

rFLAGS Affected

None

Exceptions

Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The AMD 3DNow!™ instructions are not supported, as indi-
cated by EDX bit 31 of CPUID extended function
8000_0001h; and Long Mode is not supported, as indicated
by EDX bit 29 of CPUID extended function 8000_0001h.
X X X The operand was a register.

PREFETCHx 231

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

PREFETCH/evel Prefetch Data to Cache Level Jevel

Loads a cache line from the specified memory address into the data-cache level
specified by the locality reference bits 5-3 of the ModRM byte. Table 3-16 on page 233
lists the locality reference options for the instruction.

This instruction loads a cache line even if the mem8 address is not aligned with the
start of the line. If the cache line is already contained in a cache level that is lower
than the specified locality reference, or if a memory fault is detected, a bus cycle is
not initiated and the instruction is treated as a NOP.

The operation of this instruction is implementation-dependent. The processor
implementation can ignore or change this instruction. The size of the cache line also
depends on the implementation, with a minimum size of 32 bytes. AMD processors
alias PREFETCH1 and PREFETCH2 to PREFETCHUO. For details on the use of this
instruction, see the software-optimization documentation relating to particular
hardware implementations.

Mnemonic Opcode Description
PREFETCHNTA mem8 0F 18/0 Move data closer to the processor using the NTA reference.
PREFETCHTO mem8 OF 18 /1 Move data closer to the processor using the TO reference.
PREFETCHT1 mem8 OF 18 /2 Move data closer to the processor using the T1 reference.
PREFETCHT2 mem8 OF 18/3 Move data closer to the processor using the T2 reference.

232 PREFETCHIevel

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

Table 3-16. Locality References for the Prefetch Instructions

Locality _—n
Reference Description

NTA Non-Temporal Access—Move the specified data into the processor with minimum
cache pollution. This is intended for data that will be used only once, rather than
repeatedly. The specific technique for minimizing cache pollution is
implementation-dependent and may include such techniques as allocating space
in a software-invisible buffer, allocating a cache line in only a single way, etc. For
details, see the software-optimization documentation for a particular hardware
implementation.

TO All Cache Levels—Move the specified data into all cache levels.

T Level 2 and Higher—Move the specified data into all cache levels except Oth level
(L1) cache.

T2 Level 3 and Higher—Move the specified data into all cache levels except Oth level
(L1) and 1st level (L2) caches.

Related Instructions
PREFETCH, PREFETCHW
rFLAGS Affected

None

Exceptions

None

PREFETCHIevel 233

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

PUSH Push onto Stack

Decrements the stack pointer and then copies the specified immediate value or the
value in the specified register or memory location to the top of the stack (the memory
location pointed to by SS:rSP).

The operand-size attribute determines the number of bytes pushed to the stack. The
stack-size attribute determines whether SP, ESP, or RSP is the stack pointer. The
address-size attribute is used only to locate the memory operand when pushing a
memory operand to the stack.

If the instruction pushes the stack pointer (rSP), the resulting value on the stack is
that of rSP before execution of the instruction.

There is a PUSH CS instruction but no corresponding POP CS. The RET (Far)
instruction pops a value from the top of stack into the CS register as part of its
operation.

In 64-bit mode, the operand size of all PUSH instructions defaults to 64 bits, and there
is no prefix available to encode a 32-bit operand size. Using the PUSH CS, PUSH DS,
PUSH ES, or PUSH SS instructions in 64-bit mode generates an invalid-opcode
exception.

Pushing an odd number of 16-bit operands when the stack address-size attribute is 32
results in a misaligned stack pointer.

Mnemonic Opcode Description

PUSH reg/mem16 FF /6 Push the contents of a 16-bit register or memory operand onto
the stack.
Push the contents of a 32-bit register or memory operand onto

PUSH reg/mem32 FE/6 the stack. (No prefix for encoding this in 64-bit mode.)

PUSH reg/memé4 FF /6 Push the contents of a 64-bit register or memory operand onto
the stack.

PUSH reg16 50 +w Push the contents of a 16-bit register onto the stack.
Push the contents of a 32-bit register onto the stack. (No prefix

PUSH reg32 50 +1d for encoding this in 64-bit mode.)

PUSH reg64 50 +rq Push the contents of a 64-bit register onto the stack.

PUSH imma 6A Push an 8-bit immediate value (sign-extended to 16, 32, or 64

bits) onto the stack.

234 PUSH

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Mnemonic Opcode Description
PUSH imm16 68 Push a 16-bit immediate value onto the stack.
: Push a 32-bit immediate value onto the stack. (No prefix for
PUSH imm32 68 encoding this in 64-bit mode.)
PUSH imm64 68 Push a sign-extended 32-bit immediate value onto the stack.
PUSH CS OF Push the CS selector onto the stack. (Invalid in 64-bit mode.)
PUSH SS 16 Push the SS selector onto the stack. (Invalid in 64-bit mode.)
PUSH DS 1E Push the DS selector onto the stack. (Invalid in 64-bit mode.)
PUSH ES 06 Push the ES selector onto the stack. (Invalid in 64-bit mode.)
PUSH FS OF A0 Push the FS selector onto the stack.
PUSH GS OF A8 Push the GS selector onto the stack.
Related Instructions
POP
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X PUSH CS, PUSH DS, PUSH ES, or PUSH SS was executed in 64-bit
mode.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

PUSH 235

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
PUSHA Push All GPRs onto Stack
PUSHAD

Pushes the contents of the eAX, eCX, eDX, eBX, eSP (original value), eBP, eSI, and
eDI general-purpose registers onto the stack in that order. This instruction decrements
the stack pointer by 16 or 32 depending on operand size.

Using the PUSHA or PUSHAD instruction in 64-bit mode generates an invalid-opcode

exception.

Mnemonic Opcode
PUSHA 60
PUSHAD 60

Related Instructions

Description

Push the contents of the AX, CX, DX, BX, original SP, BP, SI, and
DI registers onto the stack.
(Invalid in 64-bit mode.)

Push the contents of the EAX, ECX, EDX, EBX, original ESP, EBP,
ESI, and EDI registers onto the stack.
(Invalid in 64-bit mode.)

POPA, POPAD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

236

PUSHAx

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

PUSHF Push rFLAGS onto Stack
PUSHFD
PUSHFQ

Decrements the rSP register and copies the rFLAGS register (except for the VM and
RF flags) onto the stack. The instruction clears the VM and RF flags in the rFLAGS
image before putting it on the stack.

The instruction pushes 2, 4, or 8 bytes, depending on the operand size.

In 64-bit mode, this instruction defaults to a 64-bit operand size and there is no prefix
available to encode a 32-bit operand size.

In virtual-8086 mode, if system software has set the IOPL field to a value less than 3, a
general-protection exception occurs if application software attempts to execute
PUSHFx or POPFx while VME is not enabled or the operand size is not 16-bit.

Mnemonic Opcode Description
PUSHF 9C Push the FLAGS word onto the stack.
PUSHFD 9C Push the EFLAGS doubleword onto stack. (No prefix encoding
this in 64-bit mode.)
PUSHFQ 9C Push the RFLAGS quadword onto stack.
Action

// See “Pseudocode Definitions” on page 49.

PUSHF_START:

IF (REAL_MODE)
PUSHF_REAL

ELSIF (PROTECTED_MODE)
PUSHF_PROTECTED

ELSE // (VIRTUAL_MODE)
PUSHF_VIRTUAL

PUSHF_REAL:
PUSH.v old_RFLAGS // Pushed with RF and VM cleared.
EXIT

PUSHF_PROTECTED:
PUSH.v old_RFLAGS // Pushed with RF cleared.
EXIT

PUSHFx 237

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

PUSHF_VIRTUAL:

IF (RFLAGS.IOPL=3)

{
PUSH.v ol1d_RFLAGS // Pushed with RF,VM cleared.
EXIT

}

ELSIF ((CR4.VME=1) && (OPERAND_SIZE=16))

{
PUSH.v ol1d_RFLAGS // Pushed with VIF in the IF position.

// Pushed with IOPL=3.

EXIT

}

ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME=0) || (OPERAND_SIZE!=16)))
EXCEPTION [#GP(0)]

Related Instructions

POPEF, POPFD, POPFQ
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X The 1/0 privilege level was less than 3 and either VME was not
#GP enabled or the operand size was not 16-bit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

238 PUSHFx

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

RCL Rotate Through Carry Left

Rotates the bits of a register or memory location (first operand) to the left (more
significant bit positions) and through the carry flag by the number of bit positions in
an unsigned immediate value or the CL register (second operand). The bits rotated
through the carry flag are rotated back in at the right end (Isb) of the first operand
location.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF bit
(after the rotate) and the most significant bit of the result. When the rotate count is
greater than 1, the OF flag is undefined. When the rotate count is 0, no flags are
affected.

Mnemonic Opcode Description

Rotate the 9 bits consisting of the carry flag and an 8-bit register

RCL reg/mems] Do /2 or memory location left 1 bit.

Rotate the 9 bits consisting of the carry flag and an 8-bit register
RCL reg/mem8, CL D2 /2 or memory location left the number of bits specified in the CL
register.

Rotate the 9 bits consisting of the carry flag and an 8-bit register
RCL reg/mem8, imm8 C0/21b or memory location left the number of bits specified by an 8-bit
immediate value.

Rotate the 17 bits consisting of the carry flag and a 16-bit register

RCL reg/mem16, 1 D1/2 or memory location left 1 bit.
Rotate the17 bits consisting of the carry flag and a 16-bit register
RCL reg/mem16, CL D3 /2 or memory location left the number of bits specified in the CL

register.

Rotate the 17 bits consisting of the carry flag and a 16-bit register
RCL reg/mem16, imm8 C1/2ib or memory location left the number of bits specified by an 8-bit
immediate value.

Rotate the 33 bits consisting of the carry flag and a 32-bit register

RCL reg/mem32, 1 D1/2 or memory location left 1 bit.

RCL 239

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Rotate 33 bits consisting of the carry flag and a 32-bit register or
RCL reg/mem32, CL D3 /2 memory location left the number of bits specified in the CL
register.

Rotate the 33 bits consisting of the carry flag and a 32-bit register
RCL reg/mem32, imm8 C1/2ib or memory location left the number of bits specified by an 8-bit
immediate value.

Rotate the 65 bits consisting of the carry flag and a 64-bit register

RCL reg/memod, 1 D1/2 or memory location left 1 bit.
Rotate the 65 bits consisting of the carry flag and a 64-bit register
RCL reg/memé64, CL D3 /2 or memory location left the number of bits specified in the CL

register.

Rotates the 65 bits consisting of the carry flag and a 64-bit
RCL reg/mem64, imm8 C1/2b register or memory location left the number of bits specified by
an 8-bit immediate value.

Related Instructions
RCR, ROL, ROR

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

240 RCL

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

RCL

241

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

RCR Rotate Through Carry Right

Rotates the bits of a register or memory location (first operand) to the right (toward
the less significant bit positions) and through the carry flag by the number of bit
positions in an unsigned immediate value or the CL register (second operand). The
bits rotated through the carry flag are rotated back in at the left end (msb) of the first
operand location.

The processor masks the upper three bits in the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF flag
(before the rotate) and the most significant bit of the original value. When the rotate
count is greater than 1, the OF flag is undefined. When the rotate count is 0, no flags
are affected.

Mnemonic Opcode Description

Rotate the 9 bits consisting of the carry flag and an 8-bit register

RCR reg/mems, 1 Do/s or memory location right 1 bit.

Rotate the 9 bits consisting of the carry flag and an 8-bit register
RCR reg/mems8,CL D2/3 or memory location right the number of bits specified in the CL
register.

Rotate the 9 bits consisting of the carry flag and an 8-bit register
RCR reg/mem8,mm8 Co/31b or memory location right the number of bits specified by an 8-bit
immediate value.

Rotate the 17 bits consisting of the carry flag and a 16-bit register

RCR reg/memTe] D1/5 or memory location right 1 bit.
Rotate the17 bits consisting of the carry flag and a 16-bit register
RCR reg/mem16,CL D3 /3 or memory location right the number of bits specified in the CL

register.

Rotate the 17 bits consisting of the carry flag and a 16-bit register
RCR reg/mem16, imm8 C1/3ib or memory location right the number of bits specified by an 8-bit
immediate value.

Rotate the 33 bits consisting of the carry flag and a 32-bit register

RCR reg/mems32] D1/5 or memory location right 1 bit.

242 RCR

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Mnemonic Opcode Description
Rotate 33 bits consisting of the carry flag and a 32-bit register or
RCR reg/mem32,CL D3/3 memory location right the number of bits specified in the CL
register.
Rotate the 33 bits consisting of the carry flag and a 32-bit register
RCR reg/mem32, imm8 C1/3ib or memory location right the number of bits specified by an 8-bit
immediate value.
Rotate the 65 bits consisting of the carry flag and a 64-bit register
RCR reg/mem64] D1/3 or memory location right 1 bit.
Rotate 65 bits consisting of the carry flag and a 64-bit register or
RCR reg/mem64,CL D3 /3 memory location right the number of bits specified in the CL
register.
Rotate the 65 bits consisting of the carry flag and a 64-bit register
RCR reg/mem64, imm8 C1/31b or memory location right the number of bits specified by an 8-bit
immediate value.
Related Instructions
RCL, ROR, ROL
rFLAGS Affected
ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

RCR 243

AMDA

AMDG64 Technology 24594 Rev.3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

244

RCR

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

RET (Near) Near Return from Called Procedure

Returns from a procedure previously entered by a CALL near instruction. This form of
the RET instruction returns to a calling procedure within the current code segment.

This instruction pops the rIP from the stack, with the size of the pop determined by
the operand size. The new rIP is then zero-extended to 64 bits. The RET instruction
can accept an immediate value operand that it adds to the rSP after it pops the target
rIP. This action skips over any parameters previously passed back to the subroutine
that are no longer needed.

In 64-bit mode, the operand size defaults to 64 bits (eight bytes) without the need for a
REX prefix. No prefix is available to encode a 32-bit operand size in 64-bit mode.

See RET (Far) for information on far returns—returns to procedures located outside
of the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
RET 3 Near return to the calling procedure.
RET imm 16 Ciw Near return to the calling procedure then pop of the specified

number of bytes from the stack.

Related Instructions

CALL (Near), CALL (Far), RET (Far)

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X The target offset exceeded the code segment limit or was non-canon-
#GP ical.

RET (Near) 245

AMDA

AMDG64 Technology 24594 Rev.3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

246

RET (Near)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

RET (Far) Far Return from Called Procedure

Returns from a procedure previously entered by a CALL Far instruction. This form of
the RET instruction returns to a calling procedure in a different segment than the
current code segment. It can return to the same CPL or to a less privileged CPL.

RET Far pops a target CS and rIP from the stack. If the new code segment is less
privileged than the current code segment, the stack pointer is incremented by the
number of bytes indicated by the immediate operand, if present; then a new SS and
rSP are also popped from the stack.

The final value of rSP is incremented by the number of bytes indicated by the
immediate operand, if present. This action skips over the parameters (previously
passed to the subroutine) that are no longer needed.

All stack pops are determined by the operand size. If necessary, the target rIP is zero-
extended to 64 bits before assuming program control.

If the CPL changes, the data segment selectors are set to NULL for any of the data
segments (DS, ES, FS, GS) not accessible at the new CPL.

See RET (Near) for information on near returns—returns to procedures located inside
the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
RETF (B Far return to the calling procedure.
RETF imm16 Chiw Far return to the calling procedure, then pop of the specified

number of bytes from the stack.

Action

// Far returns (RETF)
// See “Pseudocode Definitions” on page 49.

RETF_START:

IF (REAL_MODE)
RETF_REAL_OR_VIRTUAL

ELSIF (PROTECTED_MODE)
RETF_PROTECTED

ELSE // (VIRTUAL_MODE)
RETF_REAL_OR_VIRTUAL

RET (Far) 247

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

RETF_REAL_OR_VIRTUAL:

IF (OPCODE = retf imml6)
temp_IMM = word-sized immediate specified in the instruction,
zero-extended to 64 bits
ELSE // (OPCODE = retf)
temp_IMM = 0

POP.v temp_RIP
POP.v temp_CS

IF (temp_RIP > CS.T1imit)
EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4

RSP.s = RSP + temp_IMM
RIP = temp_RIP
EXIT

RETF_PROTECTED:

IF (OPCODE = retf imml6)
temp_IMM = word-sized immediate specified in the instruction,
zero-extended to 64 bits
ELSE // (OPCODE = retf)
temp_IMM = 0

POP.v temp_RIP
POP.v temp_CS

temp_CPL = temp_CS.rpl

IF (CPL=temp_CPL)
{
CS = READ_DESCRIPTOR (temp_CS, iret_chk)

RSP.s = RSP + temp_IMM

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))
EXCEPTION [#GP(0)]

RIP = temp_RIP
EXIT
}
ELSE // (CPL!=temp_CPL)

248 RET (Far)

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology

}

RSP.s = RSP + temp_IMM

POP.v temp_RSP
POP.v temp_SS

CS = READ_DESCRIPTOR (temp_CS, iret_chk)
CPL = temp_CPL

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))
EXCEPTION [#GP(0)]

SS = READ_DESCRIPTOR (temp_SS, ss_chk)
RSP.s = temp_RSP + temp_IMM

IF (changing CPL)
{
FOR (seg = ES, DS, FS, GS)
IF ((seg.attr.dpl < CPL) && ((seg.attr.type = ’"data’)
|| (seg.attr.type = ’non-conforming-code’)))
{
seg = NULL // can’t use Tower dpl data segment at higher cpl
}

}

RIP = temp_RIP
EXIT

Related Instructions

CALL (Near), CALL (Far), RET (Near)

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Segment not present, X The return code segment was marked not present.

#NP (selector)

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-

canonical.
Stack, #SS (selector) X The return stack segment was marked not present.

RET (Far) 249

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-canon-
#GP ical.
General protection, X The return code selector was a null selector.
#GP
(selector) X The return stack selector was a null selector and the return mode was
non-64-bit mode or CPL was 3.
X The return code or stack descriptor exceeded the descriptor table
limit.
X The return code or stack selector’s Tl bit was set but the LDT selector
was a null selector.
X The segment descriptor for the return code was not a code segment.
X The RPL of the return code segment selector was less than the CPL.
X The return code segment was non-conforming and the segment
selector’s DPL was not equal to the RPL of the code segment’s seg-
ment selector.
X The return code segment was conforming and the segment selector’s
DPL was greater than the RPL of the code segment’s segment selector
X The segment descriptor for the return stack was not a writable data
segment.
X The stack segment descriptor DPL was not equal to the RPL of the
return code segment selector.
X The stack segment selector RPL was not equal to the RPL of the return
code segment selector.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned-memory reference was performed while alignment
checking was enabled.

250

RET (Far)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

ROL Rotate Left

Rotates the bits of a register or memory location (first operand) to the left (toward the
more significant bit positions) by the number of bit positions in an unsigned
immediate value or the CL register (second operand). The bits rotated out left are
rotated back in at the right end (Isb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, it masks
the upper two bits of the count, providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated
out (the Isb of the result). For 1-bit rotates, the instruction sets the OF flag to the
exclusive OR of the CF bit (after the rotate) and the most significant bit of the result.
When the rotate count is greater than 1, the OF flag is undefined. When the rotate
count is 0, no flags are affected.

Mnemonic Opcode Description
ROL reg/mem8, 1 DO /0 Rotate an 8-bit register or memory operand left 1 bit.
Rotate an 8-bit register or memory operand left the number of
ROL reg/mems, CL D2/0 bits specified in the CL register.
. - Rotate an 8-bit register or memory operand left the number of
ROL reg/mems, imms /0 bits specified by an 8-bit immediate value.
ROL reg/mem16, 1 D1/0 Rotate a 16-bit register or memory operand left 1 bit.
Rotate a 16-bit register or memory operand left the number of
ROL reg/memi6, CL D3 /0 bits specified in the CL register.
- : Rotate a 16-bit register or memory operand left the number of
ROL reg/memt6, imme CLfoib bits specified by an 8-bit immediate value.
ROL reg/mem32, 1 D1/0 Rotate a 32-bit register or memory operand left 1 bit.
Rotate a 32-bit register or memory operand left the number of
ROL reg/memsz2, CL b3 /0 bits specified in the CL register.
, - Rotate a 32-bit register or memory operand left the number of
ROL reg/mems32, immé C1/oib bits specified by an 8-bit immediate value.
ROL reg/memé64, 1 D1/0 Rotate a 64-bit register or memory operand left 1 bit.

ROL 251

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Rotate a 64-bit register or memory operand left the number of
ROL reg/memo64, CL D3 /0 bits specified in the CL register.
: : Rotate a 64-bit register or memory operand left the number of
ROL reg/memo64, imms C/oib bits specified by an 8-bit immediate value.
Related Instructions
RCL, RCR, ROR
rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

252

ROL

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

ROR Rotate Right

Rotates the bits of a register or memory location (first operand) to the right (toward
the less significant bit positions) by the number of bit positions in an unsigned
immediate value or the CL register (second operand). The bits rotated out right are
rotated back in at the left end (the most significant bit) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated
out (the most significant bit of the result). For 1-bit rotates, the instruction sets the OF
flag to the exclusive OR of the two most significant bits of the result. When the rotate
count is greater than 1, the OF flag is undefined. When the rotate count is 0, no flags
are affected.

Mnemonic Opcode Description
ROR reg/mems, 1 Do/ Rotate an 8-bit register or memory location right 1 bit.

Rotate an 8-bit register or memory location right the number of

ROR reg/mems, CL D21 bits specified in the CL register.
, . Rotate an 8-bit register or memory location right the number of
ROR reg/mem, immé /b bits specified by an 8-bit immediate value.
ROR reg/mem]6, 1 D1 /1 Rotate a 16-bit register or memory location right 1 bit.
Rotate a 16-bit register or memory location right the number of
ROR reg/mem, CL D3 /1 bits specified in the CL register.
. : Rotate a 16-bit register or memory location right the number of
ROR reg/mem 6, immé Qb bits specified by an 8-bit immediate value.
ROR reg/mem32, 1 DI/ Rotate a 32-bit register or memory location right 1 bit.
ROR reg/mem32, CL D3 /1 Rotate a 32-bit register or memory location right the number of

bits specified in the CL register.

CNib Rotate a 32-bit register or memory location right the number of

ROR reg/mem32, imm8 bits specified by an 8-bit immediate value.

ROR reg/mem64, 1 DI N Rotate a 64-bit register or memory location right 1 bit.

ROR 253

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Rotate a 64-bit register or memory operand right the number of
ROR reg/mem64, CL D3 /1 bits specified in the CL register.
: : Rotate a 64-bit register or memory operand right the number of
ROR reg/memé4, immé QN bits specified by an 8-bit immediate value.
Related Instructions
RCL, RCR, ROL
rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

254

ROR

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SAHF Store AH into Flags

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). The
instruction ignores bits 1, 3, and 5 of register AH; it sets those bits in the EFLAGS
register to 1, 0, and 0, respectively.

The SAHF instruction can only be executed in 64-bit mode if supported by the
processor implementation. Check the status of ECX bit 0 returned by CPUID
extended function 8000_0001h to verify that the processor supports SAHF in 64-bit
mode.

Mnemonic Opcode Description
Loads the sign flag, the zero flag, the auxiliary flag, the parity flag,
SAHF 9E and the carry flag from the AH register into the lower 8 bits of the
EFLAGS register.

Related Instructions
LAHF

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M| M

21 (20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X Thisinstructionis notsupportedin64-bitmode, asindicated by ECX
bit 0 returned by CPUID standard function 8000_0001h.

SAHF 255

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

SAL shift Left
SHL

Shifts the bits of a register or memory location (first operand) to the left through the
CF bit by the number of bit positions in an unsigned immediate value or the CL
register (second operand). The instruction discards bits shifted out of the CF flag. For
each bit shift, the SAL instruction clears the least-significant bit to 0. At the end of the
shift operation, the CF flag contains the last bit shifted out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

The effect of this instruction is multiplication by powers of two.

For 1-bit shifts, the instruction sets the OF flag to the exclusive OR of the CF bit (after
the shift) and the most significant bit of the result. When the shift count is greater
than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHL is an alias to the SAL instruction.

Mnemonic Opcode Description
SAL reg/mem8, 1 DO /4 Shift an 8-bit register or memory location left 1 bit.

Shift an 8-bit register or memory location left the number of bits

SAL reg/mems, CL D2/4 specified in the CL register.
, , Shift an 8-bit register or memory location left the number of bits
SAL reg/mems, imms 0 /4ib specified by an 8-bit immediate value.
SAL reg/mem]6, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.
Shift a 16-bit register or memory location left the number of bits
SAL reg/mem16, CL D3 /4 specified in the CL register.
- : Shift a 16-bit register or memory location left the number of bits
SAL reg/meme, immé C1/4ib specified by an 8-bit immediate value.
SAL reg/mem32, 1 D1/4 Shift a 32-bit register or memory location left 1 bit.
SAL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number of bits

specified in the CL register.

256 SAL, SHL

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Mnemonic Opcode Description
SAL reg/mem32, imm8 Cl/aib Shift a 32-bit register or memory location left the number of bits

specified by an 8-bit immediate value.
SAL reg/memé64, 1 D1/4 Shift a 64-bit register or memory location left 1 bit.

Shift a 64-bit register or memory location left the number of bits

SAL reg/membd, CL D3 /4 specified in the CL register.
: : Shift a 64-bit register or memory location left the number of bits
SAL reg/memb4, imms Q1 /4ib specified by an 8-bit immediate value.
SHL reg/mem8, 1 DO /4 Shift an 8-bit register or memory location by 1 bit.
SHL reg/mems, CL D2 /4 Shift an 8-bit register or memory location left the number of bits

specified in the CL register.

C0/aib Shift an 8-bit register or memory location left the number of bits

SHL reg/mems, immé specified by an 8-bit immediate value.

SHL reg/mem16, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

Shift a 16-bit register or memory location left the number of bits

SHL reg/meme, CL D3 /4 specified in the CL register.
- : Shift a 16-bit register or memory location left the number of bits
SHL reg/mem 16, imms Cifaib specified by an 8-bit immediate value.
SHL reg/mem32, 1 D1 /4 Shift a 32-bit register or memory location left 1 bit.
Shift a 32-bit register or memory location left the number of bits
SHL reg/mem32, CL D3 /4 specified in the CL register.
: , Shift a 32-bit register or memory location left the number of bits
SHL reg/mem32, immé C1/Aib specified by an 8-bit immediate value.
SHL reg/mem64, 1 D1 /4 Shift a 64-bit register or memory location left 1 bit.
Shift a 64-bit register or memory location left the number of bits
SHL reg/mem64, CL D3 /4 specified in the CL register.
SHL reg/memé4, immé C1/aib Shift a 64-bit register or memory location left the number of bits

specified by an 8-bit immediate value.
Related Instructions

SAR, SHR, SHLD, SHRD

SAL, SHL 257

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M| M U M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

258 SAL, SHL

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SAR Shift Arithmetic Right

Shifts the bits of a register or memory location (first operand) to the right through the
CF bit by the number of bit positions in an unsigned immediate value or the CL
register (second operand). The instruction discards bits shifted out of the CF flag. At
the end of the shift operation, the CF flag contains the last bit shifted out of the first
operand.

The SAR instruction does not change the sign bit of the target operand. For each bit
shift, it copies the sign bit to the next bit, preserving the sign of the result.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit shifts, the instruction clears the OF flag to 0. When the shift count is greater
than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

Although the SAR instruction effectively divides the operand by a power of 2, the
behavior is different from the IDIV instruction. For example, shifting -11
(FFFFFFF5h) by two bits to the right (that is, divide -11 by 4), gives a result of
FFFFFFFDh, or -3, whereas the IDIV instruction for dividing -11 by 4 gives a result of
-2. This is because the IDIV instruction rounds off the quotient to zero, whereas the
SAR instruction rounds off the remainder to zero for positive dividends and to
negative infinity for negative dividends. So, for positive operands, SAR behaves like
the corresponding IDIV instruction. For negative operands, it gives the same result if
and only if all the shifted-out bits are zeroes; otherwise, the result is smaller by 1.

Mnemonic Opcode Description
SAR reg/mem8, 1 DO /7 Shift a signed 8-bit register or memory operand right 1 bit.
SAR reg/mems, CL D2 /7 Shift a signed 8-bit register or memory operand right the number

of bits specified in the CL register.

Shift a signed 8-bit register or memory operand right the number

SAR reg/mems, immé /7ib of bits specified by an 8-bit immediate value.

SAR reg/mem16, 1 D1/7 Shift a signed 16-bit register or memory operand right 1 bit.

SAR 259

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Mnemonic Opcode Description

Shift a signed 16-bit register or memory operand right the

SAR reg/memT6, CL D3 /7 number of bits specified in the CL register.

Q1 /7ib Shift a signed 16-bit register or memory operand right the

SAR reg/mem16, immé number of bits specified by an 8-bit immediate value.

SAR reg/mem32, 1 D1/7 Shift a signed 32-bit register or memory location 1 bit.
Ssegimen, s S s o o memon octont
Ssegmens? imng s Sl o e on g
SAR reg/mem64, 1 D1/7 Shift a signed 64-bit register or memory location right 1 bit.
SAR reg/memé4, CL D3 /7 Shift a signed 64-bit register or memory location right the

number of bits specified in the CL register.

Q1 /7ib Shift a signed 64-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

SAR reg/mem64, imm8
Related Instructions
SAL, SHL, SHR, SHLD, SHRD

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M| U| M| M

21 (20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

260 SAR

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

SAR

261

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

SBB Subtract with Borrow

Subtracts an immediate value or the value in a register or a memory location (second
operand) from a register or a memory location (first operand), and stores the result in
the first operand location. If the carry flag (CF) is 1, the instruction subtracts 1 from
the result. Otherwise, it operates like SUB.

The SBB instruction sign-extends immediate value operands to the length of the first
operand size.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a borrow in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

This instruction is useful for multibyte (multiword) numbers because it takes into
account the borrow from a previous SUB instruction.

The forms of the SBB instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
SBB AL, imm8 1Cib Eubtract an immediate 8-bit value from the AL register with
Orrow.
SBB AX, imm16 1D iw gubtract an immediate 16-bit value from the AX register with
OITOW.
SBB EAX, imm32 1Did Eubtract an immediate 32-bit value from the EAX register with
Orrow.
SBB RAX, imm32 Did Subtract a sign-extended immediate 32-bit value from the RAX
register with borrow.
- : Subtract an immediate 8-bit value from an 8-bit register or
SBB reg/mems, imms 80/3 b memory location with borrow.
SBB reg/mem6, immi6 81 /3 i Subtract an immediate 16-bit value from a 16-bit register or
memory location with borrow.
- , Subtract an immediate 32-bit value from a 32-bit register or
SBB reg/mem32, imm32 81/31d memory location with borrow.
SBB reg/memé4, imm32 81 /3 id Subtract a sign-extended immediate 32-bit value from a 64-bit

register or memory location with borrow.

262 SBB

AMDA

24594 Rev. 3.10 February 2005

Mnemonic

SBB reg/mem 16, immé&

SBB reg/mem32, imm8

SBB reg/memé64, immé8

SBB reg/mem8, reg8

SBB reg/mem 16, reg16

SBB reg/mem32, reg32

SBB reg/memé64, reg64

SBB reg8, reg/mem8

SBB reg 16, reg/mem16

SBB reg32, req/mem32

SBB reg64, req/mem64

Related Instructions

SUB, ADD, ADC

Opcode

83 /3ib

83 /31b

83 /3ib

18/r

19/r

19/r

19/r

1A /r

1B/r

1B /r

1B/r

AMDG64 Technology

Description

Subtract a sign-extended 8-bit immediate value from a 16-bit
register or memory location with borrow.

Subtract a sign-extended 8-bit immediate value from a 32-bit
register or memory location with borrow.

Subtract a sign-extended 8-bit immediate value from a 64-bit
register or memory location with borrow.

Subtract the contents of an 8-bit register from an 8-bit register or
memory location with borrow.

Subtract the contents of a 16-bit register from a 16-bit register or
memory location with borrow.

Subtract the contents of a 32-bit register from a 32-bit register or
memory location with borrow.

Subtract the contents of a 64-bit register from a 64-bit register or
memory location with borrow.

Subtract the contents of an 8-bit register or memory location
from the contents of an 8-bit register with borrow.

Subtract the contents of a 16-bit register or memory location
from the contents of a 16-bit register with borrow.

Subtract the contents of a 32-bit register or memory location
from the contents of a 32-bit register with borrow.

Subtract the contents of a 64-bit register or memory location
from the contents of a 64-bit register with borrow.

SBB 263

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

264 SBB

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SCAS Scan String
SCASB

SCASW

SCASD

SCASQ

Compares the AL, AX, EAX, or RAX register with the byte, word, doubleword, or
quadword pointed to by ES:rDI, sets the status flags in the rFLAGS register according
to the results, and then increments or decrements the rDI register according to the
state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the rDI register; otherwise, it
decrements it. The instruction increments or decrements the rDI register by 1, 2, 4, or
8, depending on the size of the operands.

The forms of the SCASx instruction with an explicit operand address the operand at
ES:rDI. The explicit operand serves only to specify the size of the values being
compared.

The no-operands forms of the instruction use the ES:rDI registers to point to the value
to be compared. The mnemonic determines the size of the operands and the specific
register containing the other comparison value.

For block comparisons, the SCASx instructions support the REPE or REPZ prefixes
(they are synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For
details about the REP prefixes, see “Repeat Prefixes” on page 10. A SCASx
instruction can also operate inside a loop controlled by the LOOPcc instruction.

Mnemonic Opcode Description

Compare the contents of the AL register with the byte at ES:rDI,

SCAS mems AE and then increment or decrement rDI.
SCAS mem 6 AF Compare the contents of the AX register with the word at ES:DI,
and then increment or decrement rDI.
Compare the contents of the EAX register with the doubleword at
SCAS mem32 AP ES:rDI, and then increment or decrement rDI.
SCAS memeéa AF Compare the contents of the RAX register with the quadword at

ES:rDI, and then increment or decrement rDI.

SCASx 265

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
SCASB AE Compare the contents of the AL register with the byte at ES:rDI,
and then increment or decrement rDI.
SCASW AF Compare the contents of the AX register with the word at ES:rDI,
and then increment or decrement rDI.
SCASD AF Compare the contents of the EAX register with the doubleword at
ES:rDI, and then increment or decrement rDI.
SCASQ AF Compare the contents of the RAX register with the quadword at
ES:rDI, and then increment or decrement rDI.
Related Instructions
CMP, CMPSx
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M
21 20 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2 0
Note: ffiz‘s 31-22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X A null ES segment was used to reference memory.
#GP
X X X A memory address exceeded the ES segment limit or was non-canon-
ical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

266

SCASx

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SETcc Set Byte on Condition

Checks the status flags in the rFLAGS register and, if the flags meet the condition
specified in the mnemonic (cc), sets the value in the specified 8-bit memory location or
register to 1. If the flags do not meet the specified condition, SETcc clears the memory
location or register to 0.

Mnemonics with the A (above) and B (below) tags are intended for use when
performing unsigned integer comparisons; those with G (greater) and L (less) tags are
intended for use with signed integer comparisons.

Software typically uses the SETcc instructions to set logical indicators. Like the
CMOVcc instructions (page 103), the SETcc instructions can replace two
instructions—a conditional jump and a move. Replacing conditional jumps with
conditional sets can help avoid branch-prediction penalties that may result from
conditional jumps.

If the logical value “true” (logical one) is represented in a high-level language as an
integer with all bits set to 1, software can accomplish such representation by first
executing the opposite SETcc instruction—for example, the opposite of SETZ is
SETNZ—and then decrementing the result.

A ModR/M byte is used to identify the operand. The reg field in the ModR/M byte is
unused.

Mnemonic Opcode Description
SETO reg/mem8 0F90/0 Set byte if overflow (OF =1).
SETNO reg/mem8 0F 91 /0 Set byte if not overflow (OF = 0).
SETB reg/mem8 Set byte if below (CF=1).
SETC reg/mem8 0F92/0 Set byte if carry (CF=1).
SETNAE reg/mem8 Set byte if not above or equal (CF =1).
SETNB reg/mem8 Set byte if not below (CF =0).
SETNC reg/mem8 0F 93 /0 Set byte if not carry (CF =0).
SETAE reg/mem8 Set byte if above or equal (CF = 0).
SETZ reg/mem8 0F 94 /0 Set byte if zero (ZF =1).
SETE reg/mem8 Set byte if equal (ZF =1).
SETNZ reg/mem8 0F 95 /0 Set byte if not zero (ZF =0).
SETNE reg/mem8 Set byte if not equal (ZF = 0).

SETcc 267

AMDA

AMDG64 Technology

Mnemonic

SETBE reg/mem8
SETNA reg/mem8

SETNBE reg/mem8
SETA reg/mem8

SETS reg/mem8
SETNS reg/mem8

SETP reg/mem8
SETPE reg/mem8

SETNP reg/mem8
SETPO reg/mem8

SETL reg/mem8
SETNGE reg/mem8

SETNL reg/mem8
SETGE reg/mem8

SETLE reg/mem8
SETNG reg/mem8

SETNLE reg/mem8
SETG reg/mem8

Related Instructions

None
rFLAGS Affected

None

Opcode

OF 96 /0

0F 97 /0

OF 98 /0
0F 99 /0

OF9A /0

OF9B/0

OF 9C/0

0F9D /0

OF 9E /0

OF 9F /0

24594 Rev. 3.10 February 2005

Description

Set byte if below or equal (CF=1o0rZF=1).
Set byte if not above (CF=1o0rZF=1).

Set byte if not below or equal (CF =0 and ZF = 0).
Set byte if above (CF=0and ZF =0).

Set byte if sign (SF=1).
Set byte if not sign (SF = 0).

Set byte if parity (PF=1).
Set byte if parity even (PF=1).

Set byte if not parity (PF =0).
Set byte if parity odd (PF = 0).

Set byte if less (SF <> OF).
Set byte if not greater or equal (SF <> OF).

Set byte if not less (SF = OF).
Set byte if greater or equal (SF = OF).

Set byte if less or equal (ZF =1 or SF <> OF).
Set byte if not greater (ZF =1 or SF <> OF).

Set byte if not less or equal (ZF = 0 and SF = OF).
Set byte if greater (ZF = 0 and SF = OF).

268

SETcc

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

SETcc 269

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

SFENCE Store Fence

Acts as a barrier to force strong memory ordering (serialization) between store
instructions preceding the SFENCE and store instructions that follow the SFENCE. A
weakly-ordered memory system allows hardware to reorder reads and writes between
the processor and memory. The SFENCE instruction guarantees that the system
completes all previous stores before executing subsequent stores.

The SFENCE instruction is weakly-ordered with respect to load instructions, data and
instruction prefetches, and the LFENCE instruction. Speculative loads initiated by
the processor, or specified explicitly using cache-prefetch instructions, can be
reordered around an SFENCE.

In addition to store instructions, SFENCE is strongly ordered with respect to other
SFENCE instructions, MFENCE instructions, and serializing instructions.

Support for the SFENCE instruction is indicated when the SSE bit (bit 25) is set to 1 in
EDX after executing CPUID standard function 1.

Mnemonic Opcode Description

SFENCE OF AE F8 Force strong ordering of (serialized) store operations.

Related Instructions

LFENCE, MFENCE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid Opcode, #UD | X X X The SSE instructions are not supported, as indicated by EDX bit 25 of

CPUID standard function 1; and the AMD extensions to MMX are not
supported, as indicated by EDX bit 22 of CPUID extended function
8000_0001h.

270 SFENCE

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SHL shift Left

This instruction is synonymous with the SAL instruction. For information, see “SAL
SHL” on page 256.

SHL 271

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

SHLD Shift Left Double

Shifts the bits of a register or memory location (first operand) to the left by the
number of bit positions in an unsigned immediate value or the CL register (third
operand), and shifts in a bit pattern (second operand) from the right. At the end of the
shift operation, the CF flag contains the last bit shifted out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63. If the masked count is greater than the operand size, the result in the destination
register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the operand being shifted changes, the instruction sets
the OF flag to 1. If the count is greater than 1, OF is undefined.

Mnemonic Opcode Description

Shift bits of a 16-bit destination register or memory operand to
SHLD reg/mem 16, reqi6, imm8 OF Ad/rib the left the number of bits specified in an 8-bit immediate value,
while shifting in bits from the second operand.

Shift bits of a 16-bit destination register or memory operand to
SHLD reg/mem]6, reg 16, CL OF A5 /r the left the number of bits specified in the CL register, while
shifting in bits from the second operand.

Shift bits of a 32-bit destination register or memory operand to
SHLD reg/mem32, reg32, imm8 OF Ad/rib the left the number of bits specified in an 8-bit immediate value,
while shifting in bits from the second operand.

Shift bits of a 32-bit destination register or memory operand to
SHLD reg/mem32, reg32, CL OF A5 /r the left the number of bits specified in the CL register, while
shifting in bits from the second operand.

Shift bits of a 64-bit destination register or memory operand to
SHLD reg/mem64, regé4, imm8 OF Ad/rib the left the number of bits specified in an 8-bit immediate value,
while shifting in bits from the second operand.

Shift bits of a 64-bit destination register or memory operand to
SHLD reg/mem64, reg64, CL OF A5 /r the left the number of bits specified in the CL register, while
shifting in bits from the second operand.

272 SHLD

AMDA

24594 Rev. 3.10 February 2005

Related Instructions

SHRD, SAL, SAR, SHR, SHL

AMDG64 Technology

rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M U M M
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Note: gits 31-22, 15, 5,3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

SHLD 273

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

SHR Shift Right

Shifts the bits of a register or memory location (first operand) to the right through the
CF bit by the number of bit positions in an unsigned immediate value or the CL
register (second operand). The instruction discards bits shifted out of the CF flag. At
the end of the shift operation, the CF flag contains the last bit shifted out of the first
operand.

For each bit shift, the instruction clears the most-significant bit to 0.
The effect of this instruction is unsigned division by powers of two.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit shifts, the instruction sets the OF flag to the most-significant bit of the
original value. If the count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

Mnemonic Opcode Description
SHR reg/mem8, 1 DO /5 Shift an 8-bit register or memory operand right 1 bit.
SHR reg/mem8, CL D2 /5 Shift an 8-bit register or memory operand right the number of

bits specified in the CL register.

Shift an 8-bit register or memory operand right the number of

SHR reg/mem, immé /51 bits specified by an 8-bit immediate value.
SHR reg/mem16, 1 D1/5 Shift a 16-bit register or memory operand right 1 bit.
Shift a 16-bit register or memory operand right the number of
SHRreg/mem6, CL D3 /5 bits specified in the CL register.
, , Shift a 16-bit register or memory operand right the number of
SHR reg/mem 6, imm8 Q1 /50 bits specified by an 8-bit immediate value.
SHR reg/mem32, 1 D1/5 Shift a 32-bit register or memory operand right 1 bit.
Shift a 32-bit register or memory operand right the number of
SHR reg/mem32, CL D3 /5 bits specified in the CL register.
SHR reg/mem32, immé C1/5b Shift a 32-bit register or memory operand right the number of

bits specified by an 8-bit immediate value.

274 SHR

AMDA

24594 Rev. 3.10 February 2005

SHR reg/memé64, 1 D1/5
SHR reg/memé4, CL D3 /5
SHR reg/memé64, imm8 C1/5ib

Related Instructions
SHL, SAL, SAR, SHLD, SHRD
rFLAGS Affected

AMDG64 Technology

Shift a 64-bit register or memory operand right 1 bit.

Shift a 64-bit register or memory operand right the number of
bits specified in the CL register.

Shift a 64-bit register or memory operand right the number of
bits specified by an 8-bit immediate value.

ID |VIP | VIF| AC | VM | RF | NT

I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M MU M| M

21 (20 | 19 | 18 | 17 16 | 14

13-12 1 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment
checking was enabled.

SHR 275

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

SHRD Shift Right Double

Shifts the bits of a register or memory location (first operand) to the right by the
number of bit positions in an unsigned immediate value or the CL register (third
operand), and shifts in a bit pattern (second operand) from the left. At the end of the
shift operation, the CF flag contains the last bit shifted out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63. If the masked count is greater than the operand size, the result in the destination
register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the value being shifted changes, the instruction sets
the OF flag to 1. If the count is greater than 1, the OF flag is undefined.

Mnemonic Opcode Description

Shift bits of a 16-bit destination register or memory operand to
SHRD reg/mem16, regi16, immé8 OF AC/rib the right the number of bits specified in an 8-bit immediate
value, while shifting in bits from the second operand.

Shift bits of a 16-bit destination register or memory operand to
SHRD reg/mem]6, reg 16, CL OF AD /r the right the number of bits specified in the CL register, while
shifting in bits from the second operand.

Shift bits of a 32-bit destination register or memory operand to
SHRD reg/mem32, reg32, imm8 OF AC/rib the right the number of bits specified in an 8-bit immediate
value, while shifting in bits from the second operand.

Shift bits of a 32-bit destination register or memory operand to
SHRD reg/mem32, reg32, CL OFAD /r the right the number of bits specified in the CL register, while
shifting in bits from the second operand.

Shift bits of a 64-bit destination register or memory operand to
SHRD reg/memé64, reg64, imm8 OF AC/rib the right the number of bits specified in an 8-bit immediate
value, while shifting in bits from the second operand.

Shift bits of a 64-bit destination register or memory operand to
SHRD reg/memé64, reg64, CL OFAD /r the right the number of bits specified in the CL register, while
shifting in bits from the second operand.

276 SHRD

AMDA

24594 Rev. 3.10 February 2005

Related Instructions

SHLD, SHR, SHL, SAR, SAL

AMDG64 Technology

rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M U M M
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Note: gits 31-22, 15, 5,3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

SHRD 277

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
STC Set Carry Flag
Sets the carry flag (CF) in the rFLAGS register to one.
Mnemonic Opcode Description
STC F9 Set the carry flag (CF) to one.
Related Instructions
CLC, CMC
rFLAGS Affected
ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
1
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0

flags are U.

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

Exceptions

None

278 STC

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

STD Set Direction Flag

Set the direction flag (DF) in the rFLAGS register to 1. If the DF flag is 0, each
iteration of a string instruction increments the data pointer (index registers rSI or
rDI). If the DF flag is 1, the string instruction decrements the pointer. Use the CLD
instruction before a string instruction to make the data pointer increment.

Mnemonic Opcode Description

STD FD Set the direction flag (DF) to one.
Related Instructions
CLD, INSx, LODSx, MOVSx, OUTSx, SCASx, STOSx, CMPSx

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
1

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: ff?/ts 31-22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

Exceptions

None

S1D 279

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

STOS Store String
STOSB

STOSW

STOSD

STOSQ

Copies a byte, word, doubleword, or quadword from the AL, AX, EAX, or RAX
registers to the memory location pointed to by ES:rDI and increments or decrements
the rDI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the pointer; otherwise, it decrements the
pointer. It increments or decrements the pointer by 1, 2, 4, or 8, depending on the size
of the value being copied.

The forms of the STOSx instruction with an explicit operand use the operand only to
specify the type (size) of the value being copied.

The no-operands forms specify the type (size) of the value being copied with the
mnemonic.

The STOSx instructions support the REP prefixes. For details about the REP prefixes,
see “Repeat Prefixes” on page 10. The STOSx instructions can also operate inside a
LOOPcc instruction.

Mnemonic Opcode Description

Store the contents of the AL register to ES:rDI, and then

STOS mem AA increment or decrement rDI.

STOS mem 6 AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.
Store the contents of the EAX register to ES:rDI, and then

STOS mem32 AB increment or decrement rDI.

STOS meme4 AB Store the contents of the RAX register to ES:rDI, and then
increment or decrement rDI.

STOSB AA _Store the contents of the AL register to ES:rDI, and then
increment or decrement rDI.

STOSW AB Store the contents of the AX register to ES:rDI, and then

increment or decrement rDI.

280 STOSx

AMDA

24594 Rev. 3.10

STOSD

STOSQ

February 2005

Related Instructions

AB

AB

AMDG64 Technology

Store the contents of the EAX register to ES:rDI, and then
increment or decrement rDI.

Store the contents of the RAX register to ES:rDI, and then
increment or decrement rDI.

LODSx, MOVSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded the ES segment limit or was non-canon-
#GP ical.
X The ES segment was a non-writable segment.
X A null ES segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

STOSx 281

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

SUB Subtract

Subtracts an immediate value or the value in a register or memory location (second
operand) from a register or a memory location (first operand) and stores the result in
the first operand location. An immediate value is sign-extended to the length of the
first operand.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a borrow in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

The forms of the SUB instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

Subtract an immediate 8-bit value from the AL register and store

SUB AL immé 2Cib the result in AL.
SUB AX, imm16 Diw Subtract an immediate 16-bit value from the AX register and store
the result in AX.
- , Subtract an immediate 32-bit value from the EAX register and
SUB EAX, imms32 W id store the result in EAX.
SUB RAX, imm32 D id Subtract a sign-extended immediate 32-bit value from the RAX
register and store the result in RAX.
- - Subtract an immediate 8-bit value from an 8-bit destination
SUB reg/mems, immé 80/5ib register or memory location.
SUB reg/mem6, imm16 81 /5w Subtract an immediate 16-bit value from a 16-bit destination
register or memory location.
- . Subtract an immediate 32-bit value from a 32-bit destination
SUB reg/mems2, imm32 81/5id register or memory location.
SUB reg/mem64, imms32 81 /5id Subtract a sign-extended immediate 32-bit value from a 64-bit
destination register or memory location.
- , Subtract a sign-extended immediate 8-bit value from a 16-bit
SUB reg/mem]6, immé 83/51b register or memory location.
SUB reg/mem32, immé 83 /51b Subtract a sign-extended immediate 8-bit value from a 32-bit
register or memory location.
SUB reg/memé64, immé 83 /5 b Subtract a sign-extended immediate 8-bit value from a 64-bit

register or memory location.

282 suB

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Mnemonic Opcode Description
SUB reg/mems, reg8 28 r Subtract the contents of an 8-bit register from an 8-bit destination

register or memory location.

Subtract the contents of a 16-bit register from a 16-bit destination

SUB reg/memie, reg1o 29/r register or memory location.

Subtract the contents of a 32-bit register from a 32-bit destination
SUB reg/mem32, reg32 2/ register or memory location.
SUB reg/mem64, reg64 29 /r Subtract the contents of a 64-bit register from a 64-bit destination

9 169 register or memory location.

Subtract the contents of an 8-bit register or memory operand
SUB regs, reg/mems M from an 8-bit destination register.
SUB reg16, reg/memi6 2B Subtract the contents of a 16-bit register or memory operand

from a 16-bit destination register.

Subtract the contents of a 32-bit register or memory operand

SUB reg32, reg/mem32 28/ from a 32-bit destination register.

2B Subtract the contents of a 64-bit register or memory operand

SUB reg64, reg/memé4 from a 64-bit destination register.

Related Instructions

ADC, ADD, SBB

SuB 283

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

284 suB

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

TEST Test Bits

Performs a bit-wise logical AND on the value in a register or memory location (first
operand) with an immediate value or the value in a register (second operand) and sets
the flags in the rFLAGS register based on the result. While the AND instruction
changes the contents of the destination and the flag bits, the TEST instruction
changes only the flag bits.

Mnemonic Opcode Description

AND an immediate 8-bit value with the contents of the AL

TEST AL, imm8 A8 ib register and set rFLAGS to reflect the result.
TEST reg/mems, imm8 F6 /0 ib AND an immediate 8-bit value with the contents of an 8-bit

register or memory operand and set rFLAGS to reflect the result.

AND an immediate 16-bit value with the contents of a 16-bit

TEST reg/mem{6, imm16 F7 /01w register or memory operand and set rFLAGS to reflect the result.
- - AND an immediate 32-bit value with the contents of a 32-bit
TEST reg/mem32, imm32 F7/0id register or memory operand and set rFLAGS to reflect the result.
AND a sign-extended immediate32-bit value with the contents of
TEST reg/mem64, imm32 F7/0id a 64-bit register or memory operand and set rFLAGS to reflect
the result.
AND the contents of an 8-bit register with the contents of an 8-bit
TEST reg/mem, regé 84/r register or memory operand and set rFLAGS to reflect the result.
AND the contents of a 16-bit register with the contents of a 16-bit
TEST reg/mem16, reg16 8/ register or memory operand and set rFLAGS to reflect the result.
AND the contents of a 32-bit register with the contents of a 32-bit
TEST reg/mem32, reg32 8/ register or memory operand and set rFLAGS to reflect the result.
TEST reg/mem64, reg6d 851 AND the contents of a 64-bit register with the contents of a 64-bit

register or memory operand and set rFLAGS to reflect the result.

TEST 285

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

Related Instructions

AND, CMP
rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 M M U M 0
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: gits 31-22, 15, 5,3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

286 TEST

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

XADD Exchange and Add

Exchanges the contents of a register (second operand) with the contents of a register
or memory location (first operand), computes the sum of the two values, and stores the
result in the first operand location.

The forms of the XADD instruction that write to memory support the LOCK prefix.
For details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

Exchange the contents of an 8-bit register with the contents of an
XADD reg/mem8, reg8 OF Co/r 8-bit destination register or memory operand and load their sum
into the destination.

Exchange the contents of a 16-bit register with the contents of a
XADD reg/mem16, reg16 OF C1/r 16-bit destination register or memory operand and load their
sum into the destination.

Exchange the contents of a 32-bit register with the contents of a
XADD reg/mem32, reg32 OFCl/r 32-bit destination register or memory operand and load their
sum into the destination.

Exchange the contents of a 64-bit register with the contents of a
XADD reg/mem64, reg64 OF Cl/r 64-bit destination register or memory operand and load their
sum into the destination.

Related Instructions

None

XADD 287

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 | 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

288 XADD

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

XCHG Exchange

Exchanges the contents of the two operands. The operands can be two general-
purpose registers or a register and a memory location. If either operand references
memory, the processor locks automatically, whether or not the LOCK prefix is used
and independently of the value of IOPL. For details about the LOCK prefix, see “Lock
Prefix” on page 10.

The x86 architecture commonly uses the XCHG EAX, EAX instruction (opcode 90h) as
a one-byte NOP. In 64-bit mode, the processor treats opcode 90h as a true NOP only if
it would exchange rAX with itself. Without this special handling, the instruction
would zero-extend the upper 32 bits of RAX, and thus it would not be a true no-
operation. Opcode 90h can still be used to exchange rAX and r8 if the appropriate
REX prefix is used.

This special handling does not apply to the two-byte ModRM form of the XCHG
instruction.

Mnemonic Opcode Description

Exchange the contents of the AX register with the contents of a

XCHG AX, reg 16 90 +rw 16-it register.

XCHG reg16, AX 90+ Exchange the contents of a 16-bit register with the contents of the

AX register.
XCHG EAX, reg32 90 +1d géfgirligitsftfncontents of the EAX register with the contents of a
XCHG reg32, EAX 90 +rd Ezc?iggglsttef;e contents of a 32-bit register with the contents of the
XCHG RAX, reg64 90 41 Ezc_ginrgeg itsftfr-contents of the RAX register with the contents of a
XCHG reg64, RAX 90 +g tEﬁgh;:)g(g? (;[giité(;ntents of a 64-bit register with the contents of
XCHG reg/mems, reg8 86 /r Exchange the contents of an 8-bit register with the contents of an
8-bit register or memory operand.
KCHG regs,reg/mems B6/1 wih e contens o on o regtor
XCHG reg/mem16, reg 16 87 /r Exchange the contents of a 16-bit register with the contents of a

16-bit register or memory operand.

XCHG 289

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
Exchange the contents of a 16-bit register or memory operand
XCHG reg16, reg/mem6 87/r with the contents of a 16-bit register.
Exchange the contents of a 32-bit register with the contents of a
XCHG reg/mem32, regs2 87/ 32-bit register or memory operand.
Exchange the contents of a 32-bit register or memory operand
XCHG regs2, reg/mems2 87/r with the contents of a 32-bit register.
Exchange the contents of a 64-bit register with the contents of a
XCHG reg/memé4, reg64 87/r 64-bit register or memory operand.
Exchange the contents of a 64-bit register or memory operand
XCHG reg6d, reg/memo64 87/r with the contents of a 64-bit register.
Related Instructions
BSWAP, XADD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The source or destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

290

XCHG

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

XLAT Translate Table Index
XLATB

Uses the unsigned integer in the AL register as an offset into a table and copies the
contents of the table entry at that location to the AL register.

The instruction uses seg:[rBX] as the base address of the table. The value of seg
defaults to the DS segment, but may be overridden by a segment prefix.

This instruction writes AL without changing RAX][63:8]. This instruction ignores
operand size.

The single-operand form of the XLAT instruction uses the operand to document the
segment and address size attribute, but it uses the base address specified by the rBX
register.

This instruction is often used to translate data from one format (such as ASCII) to
another (such as EBCDIC).

Mnemonic Opcode Description
XLAT mem8 D7 Set AL to the contents of DS:[rBX + unsigned AL].
XLATB D7 Set AL to the contents of DS:[rBX + unsigned AL].

Related Instructions

None

rFLAGS Affected

None

Exceptions

Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

XLATx 291

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

292 XLATX

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

XOR Logical Exclusive OR

Performs a bitwise exclusive OR operation on both operands and stores the result in
the first operand location. The first operand can be a register or memory location. The
second operand can be an immediate value, a register, or a memory location. XOR-ing
a register with itself clears the register.

The forms of the XOR instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

The instruction performs the following operation for each bit:

X Y XXORY

0 0 0

0 1 1

1 0 1

1 1 0
Mnemonic Opcode Description

XOR the contents of AL with an immediate 8-bit operand and

XOR AL, immé 341 store the result in AL.
XOR AX, imm16 35 iy XOR the contents of AX with an immediate 16-bit operand and
store the result in AX.
, . XOR the contents of EAX with an immediate 32-bit operand and
XOR EAX, imm32 35id store the result in EAX.
XOR RAX, imm32 35 id XOR the contents of RAX with a sign-extended immediate 32-bit
operand and store the result in RAX.
XOR the contents of an 8-bit destination register or memory
XOR reg/mem8, imm8 80/6ib operand with an 8-bit immediate value and store the result in the
destination.
XOR the contents of a 16-bit destination register or memory
XOR reg/mem16, imm16 81 /6w operand with a 16-bit immediate value and store the result in the

destination.

XOR 293

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Mnemonic Opcode Description
XOR the contents of a 32-bit destination register or memory
XOR reg/mem32, imm32 81/6id operand with a 32-bit immediate value and store the result in the
destination.

XOR the contents of a 64-bit destination register or memory
XOR reg/mem64, imm32 81 /6id operand with a sign-extended 32-bit immediate value and store
the result in the destination.

XOR the contents of a 16-bit destination register or memory
XOR reg/mem16, imm8 83/61b operand with a sign-extended 8-bit immediate value and store
the result in the destination.

XOR the contents of a 32-bit destination register or memory
XOR reg/mem32, imm8 83/61b operand with a sign-extended 8-bit immediate value and store
the result in the destination.

XOR the contents of a 64-bit destination register or memory
XOR reg/mem64, imm8 83/61b operand with a sign-extended 8-bit immediate value and store
the result in the destination.

XOR the contents of an 8-bit destination register or memory
XOR reg/mems, reg8 30/r operand with the contents of an 8-bit register and store the result
in the destination.

XOR the contents of a 16-bit destination register or memory
XOR reg/memi6, regi6 3 /r operand with the contents of a 16-bit register and store the result
in the destination.

XOR the contents of a 32-bit destination register or memory
XOR reg/mem32, reg32 31 /r operand with the contents of a 32-bit register and store the result
in the destination.

XOR the contents of a 64-bit destination register or memory
XOR reg/mem64, reg64 3 /r operand with the contents of a 64-bit register and store the result
in the destination.

XOR the contents of an 8-bit destination register with the
XOR reg8, req/mem8 32/r contents of an 8-bit register or memory operand and store the
results in the destination.

XOR the contents of a 16-bit destination register with the contents
XOR reg16, reg/memI16 33/ of a 16-bit register or memory operand and store the results in
the destination.

XOR the contents of a 32-bit destination register with the
XOR reg32, reg/mem32 33/r contents of a 32-bit register or memory operand and store the
results in the destination.

XOR the contents of a 64-bit destination register with the
XOR reg64, reg/mem64 33/r contents of a 64-bit register or memory operand and store the
results in the destination.

294 XOR

AMDA

24594 Rev. 3.10 February 2005

Related Instructions

AMDG64 Technology

OR, AND, NOT, NEG
rFLAGS Affected
ID | VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 M M U M 0
2] 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: ffiz‘s 31-22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-canon-
#GP ical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

XOR 295

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

296 XOR

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

4 System Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes,
affected flags, and possible exceptions generated by the system
instructions. The system instructions are used to establish the
operating mode, access processor resources, handle program
and system errors, and manage memory. Many of these
instructions can only be executed by privileged software, such
as the operating system kernel and interrupt handlers, that run
at the highest privilege level. Only system instructions can
access certain processor resources, such as the control registers,
model-specific registers, and debug registers.

System instructions are supported in all hardware
implementations of the AMD64 architecture, except that the
following system instructions are implemented only if their
associated CPUID function bits are set:

m RDMSR and WRMSR, indicated by bit 5 of CPUID standard
function 1 or extended function 8000_0001h.

s SYSENTER and SYSEXIT, indicated by bit 11 of CPUID
standard function 1.

m SYSCALL and SYSRET, indicated by bit 11 of CPUID
extended function 8000 _0001h.

m Long Mode instructions, indicated by bit 29 of CPUID
extended function 8000_0001h.

There are also several other CPUID function bits that control
the use of system resources and functions, such as paging
functions, virtual-mode extensions, machine-check exceptions,
advanced programmable interrupt control (APIC), memory-
type range registers (MTRRs), etc. For details, see “Processor
Feature Identification” in Volume 2.

For further information about the system instructions and
register resources, see:

“System-Management Instructions” in Volume 2.

“Summary of Registers and Data Types” on page 30.

“Notation” on page 43.
“Instruction Prefixes” on page 3.

297

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

ARPL Adjust Requestor Privilege Level

Compares the requestor privilege level (RPL) fields of two segment selectors in the
source and destination operands of the instruction. If the RPL field of the destination
operand is less than the RPL field of the segment selector in the source register, then
the zero flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the destination operand remains unchanged
and the zero flag is cleared.

The destination operand can be either a 16-bit register or memory location; the source
operand must be a 16-bit register.

The ARPL instruction is intended for use by operating-system procedures to adjust
the RPL of a segment selector that has been passed to the operating system by an
application program to match the privilege level of the application program. The
segment selector passed to the operating system is placed in the destination operand
and the segment selector for the code segment of the application program is placed in
the source operand. The RPL field in the source operand represents the privilege level
of the application program. The ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower than the privilege level
of the application program.

See “Adjusting Access Rights” in Volume 2, for more information on access rights.

In 64-bit mode, this opcode (63H) is used for the MOVSXD instruction.

Mnemonic Opcode Description

ARPL reg/mem]6, req16 63 /r Adjust the RPL of a destination segment selector to a level
not less than the RPL of the segment selector specified in
the 16-bit source register.

(Invalid in 64-bit mode.)

Related Instructions

LAR, LSL, VERR, VERW

298 ARPL

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M

21 | 20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Unde-

fined flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected legacy and
compatibility mode.
Stack, #SS X A memory address exceeded the stack segment limit.
General protection, #GP X A memory address exceeded a data segment limit.
X The destination operand was in a non-writable segment.
X A null segment selector was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment
checking was enabled.

ARPL 299

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

CLI Clear Interrupt Flag

Clears the interrupt flag (IF) in the rFLAGS register to zero, thereby masking external
interrupts received on the INTR input. Interrupts received on the non-maskable
interrupt (NMI) input are not affected by this instruction.

In real mode, this instruction clears IF to 0.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the
CPL is less than or equal to the rFLAGS.IOPL field, the instruction clears IF to 0.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are
enabled (CR4.PVI = 1), then the instruction instead clears rFLAGS.VIF to 0. If none of
these conditions apply, the processor raises a general-purpose exception (#GP). For
more information, see “Protected Mode Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled
(CR4.VME = 1), the CLI instruction clears the virtual interrupt flag (rFLAGS.VIF) to
0 instead.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-
sensitive instructions.

Mnemonic Opcode Description
CLI FA Clear the interrupt flag (IF) to zero.
Action

IF (CPL <= IOPL)
RFLAGS.IF =0

ELSEIF (C(VIRTUAL_MODE) && (CR4.VME = 1))
|| (CPROTECTED_MODE) && (CR4.PVI = 1) && (CPL == 3)))
RFLAGS.VIF = 0;

ELSE
EXCEPTIONL#GP(0)]

Related Instructions

STI

300 CLI

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Unde-

fined flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X The CPL was greater than the IOPL and virtual mode extensions are
#GP not enabled (CR4.VME = 0).

X The CPL was greater than the IOPL and either the CPL was not 3 or
protected mode virtual interrupts were not enabled (CR4.PVI = 0).

CLI 301

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

CLTS Clear Task-Switched Flag in CRO

Clears the task-switched (TS) flag in the CRO register to 0. The processor sets the TS
flag on each task switch. The CLTS instruction is intended to facilitate the
synchronization of FPU context saves during multitasking operations.

This instruction can only be used if the current privilege level is 0.

See “System-Control Registers” in Volume 2 for more information on FPU
synchronization and the TS flag.

Mnemonic Opcode Description

CLTs OF 06 Clear the task-switched (TS) flag in CRO to 0.

Related Instructions

LMSW, MOV (CRn)

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

302 CLTS

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

HLT Halt

Causes the microprocessor to halt instruction execution and enter the HALT state.
Entering the HALT state puts the processor in low-power mode. Execution resumes
when an unmasked hardware interrupt (INTR), non-maskable interrupt (NMI), system
management interrupt (SMI), RESET, or INIT occurs.

If an INTR, NMI, or SMI is used to resume execution after a HLT instruction, the saved
instruction pointer points to the instruction following the HLT instruction.

Before executing a HLT instruction, hardware interrupts should be enabled. If
rFLAGS.IF = 0, the system will remain in a HALT state until an NMI, SMI, RESET, or
INIT occurs.

If an SMI brings the processor out of the HALT state, the SMI handler can decide
whether to return to the HALT state or not. See Volume 2, System Programming, for
information on SMIs.

Current privilege level must be 0 to execute this instruction.

Mnemonic Opcode Description

HLT F4 Halt instruction execution.

Related Instructions

STI, CLI
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

HLT 303

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

INT 3 Interrupt to Debug Vector

Calls the debug exception handler. This instruction maps to a 1-byte opcode (CC) that
raises a #BP exception. The INT 3 instruction is normally used by debug software to
set instruction breakpoints by replacing the first byte of the instruction opcode bytes
with the INT 3 opcode.

This one-byte INT 3 instruction behaves differently from the two-byte INT 3
instruction (opcode CD 03) (see “INT” in Chapter 3 “General Purpose Instructions”
for further information) in two ways:

m The #BP exception is handled without any IOPL checking in virtual x86 mode.
(IOPL mismatches will not trigger an exception.)

m In VME mode, the #BP exception is not redirected via the interrupt redirection
table. (Instead, it is handled by a protected mode handler.)

Mnemonic Opcode Description

INT 3 cC Trap to debugger at Interrupt 3.

For complete descriptions of the steps performed by INT instructions, see the
following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action

// Refer to INT instruction’s Action section for the details on INT_N_REAL,
// INT_N_PROTECTED, and INT_N_VIRTUAL_TO_PROTECTED.

INT3_START:

If (REAL_MODE)
INT_N_REAL / /N

I
w

ELSEIF (PROTECTED_MODE)
INT_N_PROTECTED / /N

Il
w

ELSE // VIRTUAL_MODE
INT_N_VIRTUAL_TO_PROTECTED //N

Il
w

Related Instructions

INT, INTO, IRET

304 INT3

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

rFLAGS Affected

If a task switch occurs, all flags are modified; otherwise, setting are as follows:

ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M| 0 0 | M M| 0
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Unde-
fined flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Breakpoint, #BP X X X INT 3 instruction was executed.
Invalid TSS, #TS X X As part of a stack switch, the target stack segment selector or rSP in
(selector) the TSS was that was beyond the TSS limit.

X X As part of a stack switch, the target stack segment selector in the TSS
was beyond the limit of the GDT or LDT descriptor table.

X X As part of a stack switch, the target stack segment selector in the TSS
was a null selector.

X X As part of a stack switch, the target stack segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a RPL that was not equal to its DPL.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a DPL that was not equal to the CPL of the code segment
selector.

X X As part of a stack switch, the target stack segment selector in the TSS
was not a writable segment.

Segment not present, X X The accessed code segment, interrupt gate, trap gate, task gate, or

#NP (selector) TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

INT 3 305

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X After a stack switch, a memory address exceeded the stack segment
(selector) limit or was non-canonical and a stack switch occurred.
X X As part of a stack switch, the SS register was loaded with a non-null
segment selector and the segment was marked not present.
General protection, X X X A memory address exceeded the data segment limit or was non-
#GP canonical.
X X X The target offset exceeded the code segment limit or was non-
canonical.
General protection, X X X The interrupt vector was beyond the limit of IDT.
#GP
(selector) X X The descriptor in the IDT was not an interrupt, trap, or task gate in
legacy mode or not a 64-bit interrupt or trap gate in long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less than
the CPL.

X X The segment selector specified by the interrupt or trap gate had its Tl
bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X The segment descriptor specified by the interrupt or trap gate was
not a code segment in legacy mode, or not a 64-bit code segment in
long mode.

X The DPL of the segment specified by the interrupt or trap gate was
greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

306

INT 3

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

INVD Invalidate Caches

Invalidates internal caches (data cache, instruction cache, and on-chip L2 cache) and
triggers a bus cycle that causes external caches to invalidate themselves as well.

No data is written back to main memory from invalidating internal caches. After
invalidating internal caches, the processor proceeds immediately with the execution
of the next instruction without waiting for external hardware to invalidate its caches.

This is a privileged instruction. The current privilege level (CPL) of a procedure
invalidating the processor’s internal caches must be 0.

To insure that data is written back to memory prior to invalidating caches, use the
WBINVD instruction.

This instruction does not invalidate TLB caches.

INVD is a serializing instruction.

Mnemonic Opcode Description

INVD OF 08 Flush internal caches and trigger external cache flushes.

Related Instructions

WBINVD, CLFLUSH

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

INVD 307

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

INVLPG Invalidate TLB Entry

Invalidates the TLB entry that would be used for the 1-byte memory operand.

This instruction invalidates the TLB entry, regardless of the G (Global) bit setting in
the associated PDE or PTE entry and regardless of the page size (4 Kbytes, 2 Mbytes,
or 4 Mbytes). It may invalidate any number of additional TLB entries, in addition to
the targeted entry.

INVLPG is a serializing instruction and a privileged instruction. The current privilege
level must be 0 to execute this instruction.

See “Page Translation and Protection” in Volume 2 for more information on page
translation.

Mnemonic Opcode Description
INVLPG mem8 OF01/7 Invalidate the TLB entry for the page containing a specified memory
location.

Related Instructions

MOV CRn (CR3 and CR4)
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

308 INVLPG

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

IRET Return from Interrupt
IRETD
IRETQ

Returns program control from an exception or interrupt handler to a program or
procedure previously interrupted by an exception, an external interrupt, or a
software-generated interrupt. These instructions also perform a return from a nested
task. All flags, CS, and rIP are restored to the values they had before the interrupt so
that execution may continue at the next instruction following the interrupt or
exception. In 64-bit mode or if the CPL changes, SS and RSP are also restored.

IRET, IRETD, and IRETQ are synonyms mapping to the same opcode. They are
intended to provide semantically distinct forms for various opcode sizes. The IRET
instruction is used for 16-bit operand size; IRETD is used for 32-bit operand sizes;
IRETQ is used for 64-bit operands. The latter form is only meaningful in 64-bit mode.

IRET, IRETD, or IRETQ must be used to terminate the exception or interrupt handler
associated with the exception, external interrupt, or software-generated interrupt.

IRETx is a serializing instruction.

For detailed descriptions of the steps performed by IRETx instructions, see the
following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Mnemonic Opcode Description
IRET CF Return from interrupt (16-bit operand size).
IRETD CF Return from interrupt (32-bit operand size).
IRETQ CF Return from interrupt (64-bit operand size).

Action

IRET_START:

IF (REAL_MODE)
IRET_REAL
ELSIF (PROTECTED_MODE)

IRETx 309

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

IRET_PROTECTED
ELSE // (VIRTUAL_MODE)
IRET_VIRTUAL

IRET_REAL:
POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.limit)
EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base temp_CS SHL 4

RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
RIP = temp_RIP
EXIT

IRET_PROTECTED:

IF (RFLAGS.NT=1) // iret does a task-switch to a previous task
IF (LEGACY_MODE)
TASK_SWITCH // using the ’back Tink’” field in the tss
ELSE // (LONG_MODE)

EXCEPTION [#GP(0)] // task switches aren’t supported in long mode

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF ((temp_RFLAGS.VM=1) && (CPL=0) && (LEGACY_MODE))
IRET_FROM_PROTECTED_TO_VIRTUAL

temp_CPL = temp_CS.rpl

IF ((64BIT_MODE) || (temp_CPL!=CPL))

{
POP.v temp_RSP // in 64-bit mode, iret always pops ss:rsp
POP.v temp_SS

}

CS = READ_DESCRIPTOR (temp_CS, iret_chk)

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))

{
EXCEPTION [#GP(0)]

310 IRETX

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

}
CPL = temp_CPL

IF ((started in 64-bit mode) || (changing CPL))
// ss:rsp were popped, so load them into the registers
{
SS = READ_DESCRIPTOR (temp_SS, ss_chk)
RSP.s = temp_RSP
}

IF (changing CPL)
{
FOR (seg = ES, DS, FS, GS)
IF ((seg.attr.dpl < CPL) && ((seg.attr.type = ’data’)

|| (seg.attr.type = ’non-conforming-code’)))
{
seg = NULL // can’t use lower dpl data segment at higher cp]
}
}
RFLAGS.v = temp_RFLAGS // VIF,VIP,IOPL only changed if (ol1d_CPL=0)

// IF only changed if (old_CPL<=0old_RFLAGS.IOPL)
// VM unchanged
// RF cleared

RIP = temp_RIP

EXIT

IRET_VIRTUAL:

IF ((RFLAGS.IOPL<3) && (CR4.VME=0))
EXCEPTION [#GP(0)]

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.1imit)
EXCEPTION [#GP(0)]

IF (RFLAGS.IOPL=3)
{
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged
// RF cleared
CS.sel = temp_CS
CS.base temp_CS SHL 4

RIP = temp_RIP
EXIT

IRETx 311

AMDA

AMDG64 Technology

/7

ELS

}

now ((IOPL<3) && (CR4.VM

IF ((OPERAND_SIZE=16)

&& ! ((temp_RFLAGS.IF=

&& (temp_RFLAGS.TF=0)
RFLAGS.w = temp_RFLAGS
CS.sel = temp_CS
CS.base = temp_CS SHL 4

RIP = temp_RIP
EXIT

24594 Rev. 3.10 February 2005

E=1)

1) && (RFLAGS.VIP=1))
)

// RFLAGS.VIF=temp_RFLAGS.IF
// TF,I0PL unchanged
// RF cleared

ELSE // ((RFLAGS.IOPL<3) && (CR4.VME=1) && ((OPERAND_SIZE=32) ||

// ((temp_RFLAGS.IF=1)
EXCEPTION [#GP(0)]

IRET_FROM_PROTECTED_TO_VIRTUAL:

/1
/1

temp_RIP already popped
temp_CS already popped

&& (RFLAGS.VIP=1)) || (temp_RFLAGS.TF=1)))

// temp_RFLAGS already popped, temp_RFLAGS.VM=1

POP.
POP.
POP.
POP.
POP.
POP.

CS.
CS.
CS.
CS.

SS.
SS.
SS.
SS.

DS.
DS.
DS.
DS.

ES.
ES.
ES.

temp_RSP
temp_SS
temp_ES
temp_DS
temp_FS
temp_GS

QO O O O o a

sel = temp_CS

base = temp_CS SHL 4
Timit= OxO0000FFFF

attr = 16-bit dpl13 code
sel = temp_SS

base temp_SS SHL 4
Timit= OxO000FFFF
attr = 16-bit dpl13 stack

sel = temp_DS

base = temp_DS SHL 4
Timit= OxO0000FFFF

attr = 16-bit dpl3 data

sel = temp_ES
base = temp_ES SHL 4
1Timit= OxO0000FFFF

// force the segments to have virtual-mode values

312

IRETx

AMDA

24594 Rev. 3.10

ES.attr

FS.sel

FS.base
FS.1imit
FS.attr

GS.sel

February 2005

16-bit dpl3 data

= temp_FS

temp_FS SHL 4

0x0000FFFF
16-bit dpl3 data

= temp_GS

GS.base =
GS.Timit=
GS.attr =

temp_GS SHL 4
0x0000FFFF
16-bit dpl3 data

RSP.d = temp_RSP

RFLAGS.d = temp_RFLAGS

CPL =

RIP =
EXIT

3

temp_RIP AND OxOO000FFFF

Related Instructions

INT, INTO, INT3

rFLAGS Affected

AMDG64 Technology

VIP

VIF

AC

VM

RF

NT

10PL

OF

DF

IF

TF

SF

LF

AF

PF

CF

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

2]

20

19

18

17

16

14

13-12

11

10

9

8

7

6

4

0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Unde-

fined flags are U.

Exceptions

Exception

Virtual

8086

Protected

Cause of Exception

Segment not present,
#NP (selector)

X

The return code segment was marked not present.

Stack, #SS

A memory address exceeded the stack segment limit or was non-

canonical.

Stack, #SS (selector)

The SS register was loaded with a non-null segment selector and the
segment was marked not present.

IRETx

313

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X The target offset exceeded the code segment limit or was non-
#GP canonical.
X IOPL was less than 3 and one of the following conditions was true:
* CR4.VME was 0.
* The effective operand size was 32-bit.
* Both the original EFLAGS.VIP and the new EFLAGS.IF were set.
* The new EFLAGS.TF was set.
X IRETx was executed in long mode while EFLAGS.NT=1.
General protection, X The return code selector was a null selector.
#GP
(selector) X The return stack selector was a null selector and the return mode was
non-64-bit mode or CPL was 3.
X The return code or stack descriptor exceeded the descriptor table
limit.
X The return code or stack selector’s Tl bit was set but the LDT selector
was a null selector.
X The segment descriptor for the return code was not a code segment.
X The RPL of the return code segment selector was less than the CPL.
X The return code segment was non-conforming and the segment
selector’s DPL was not equal to the RPL of the code segment’s
segment selector.
X The return code segment was conforming and the segment selector’s
DPL was greater than the RPL of the code segment’s segment selector
X The segment descriptor for the return stack was not a writable data
segment.
X The stack segment descriptor DPL was not equal to the RPL of the
return code segment selector.
X The stack segment selector RPL was not equal to the RPL of the return
code segment selector.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

314

IRETx

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

LAR Load Access Rights Byte

Loads the access rights from the segment descriptor specified by a 16-bit source
register or memory operand into a specified 16-bit, 32-bit, or 64-bit general-purpose
register and sets the zero (ZF) flag in the rFLAGS register if successful. LAR clears
the zero flag if the descriptor is invalid for any reason.

The LAR instruction checks that:

m the segment selector is not a null selector.
m the descriptor is within the GDT or LDT limit.

m the descriptor DPL is greater than or equal to both the CPL and RPL, or the seg-
ment is a conforming code segment.

m the descriptor type is valid for the LAR instruction. Valid descriptor types are
shown in the following table. LDT and TSS descriptors in 64-bit mode, and call-
gate descriptors in long mode, are only valid if bits 12-8 of doubleword +12 are
zero, as shown on page 111 of vol. 2 in Figure 4-22.

Valid Descriptor Type Description

Legacy Mode Long Mode

- - All code and data descriptors

1 - Available 16-bit TSS

2 2 LDT

3 - Busy 16-bit TSS

4 - 16-bit call gate

5 - Task gate

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

C C 32-bit or 64-bit call gate

If the segment descriptor passes these checks, the attributes are loaded into the
destination general-purpose register. If it does not, then the zero flag is cleared and
the destination register is not modified.

When the operand size is 16 bits, access rights include the DPL and Type fields located
in bytes 4 and 5 of the descriptor table entry. Before loading the access rights into the
destination operand, the low order word is masked with FFOOH.

LAR 315

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

When the operand size is 32 or 64 bits, access rights include the DPL and type as well
as the descriptor type (S field), segment present (P flag), available to system (AVL
flag), default operation size (D/B flag), and granularity flags located in bytes 4-7 of the
descriptor. Before being loaded into the destination operand, the doubleword is
masked with O0FF_FFOOH.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-
extended to 64 bits.

This instruction can only be executed in protected mode.

Mnemonic Opcode Description

LAR reg16, reg/mem16 OF 02 /r Reads the GDT/LDT descriptor referenced by the 16-bit source
operand, masks the attributes with FFOOh and saves the result in the
16-bit destination register.

LAR reg32, reg/mem16 OF 02 /r Reads the GDT/LDT descriptor referenced by the 16-bit source
operand, masks the attributes with 00FFFFOOh and saves the result in
the 32-bit destination register.

LAR reg64, reg/mem16 OF 02/r Reads the GDT/LDT descriptor referenced by the 16-bit source
operand, masks the attributes with 00FFFFOOh and saves the result in
the 64-bit destination register.

Related Instructions
ARPL, LSL, VERR, VERW
rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

21 (20 | 19 | 18 | 17 16 | 14 13-12 1 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank. Undefined flags
are U.

316 LAR

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP X A memory address exceeded the data segment limit or was non-
canonical.
X A null data segment was used to reference memory.
X The extended attribute bits of a system descriptor was not zero in
64-bit mode.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment

checking was enabled.

LAR 317

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LGDT Load Global Descriptor Table Register

Loads the pseudo-descriptor specified by the source operand into the global
descriptor table register (GDTR). The pseudo-descriptor is a memory location
containing the GDTR base and limit. In legacy and compatibility mode, the pseudo-
descriptor is 6 bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not
used. The lower two bytes specify the 16-bit limit and the third, fourth, and fifth bytes
specify the 24-bit base address. The high-order byte of the GDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper
four bytes specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit and the upper eight bytes
specify a 64-bit base address. In 64-bit mode, operand-size prefixes are ignored and
the operand size is forced to 64-bits; therefore, the pseudo-descriptor is always 10
bytes.

This instruction is only used in operating system software and must be executed at
CPL 0. It is typically executed once in real mode to initialize the processor before
switching to protected mode.

LGDT is a serializing instruction.

Mnemonic Opcode Description
LGDT mem16:32 0F 01 /2 Loads mem16:32 into the global descriptor table register.
LGDT mem16:64 OF 01 /2 Loads mem16:64 into the global descriptor table register.

Related Instructions
LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR
rFLAGS Affected

None

318 LGDT

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X X The operand was a register.
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP | X X A memory address exceeded the data segment limit or was non-
canonical.
X X CPL was not 0.
X The new GDT base address was non-canonical.
A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

LGDT 319

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LIDT Load Interrupt Descriptor Table Register

Loads the pseudo-descriptor specified by the source operand into the interrupt
descriptor table register (IDTR). The pseudo-descriptor is a memory location
containing the IDTR base and limit. In legacy and compatibility mode, the pseudo-
descriptor is six bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not
used. The lower two bytes specify the 16-bit limit and the third, fourth, and fifth bytes
specify the 24-bit base address. The high-order byte of the IDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper
four bytes specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit, and the upper eight bytes
specify a 64-bit base address. In 64-bit mode, operand-size prefixes are ignored and
the operand size is forced to 64-bits; therefore, the pseudo-descriptor is always 10
bytes.

This instruction is only used in operating system software and must be executed at
CPL 0. It is normally executed once in real mode to initialize the processor before
switching to protected mode.

LIDT is a serializing instruction.

Mnemonic Opcode Description
LIDT mem16:32 OF01/3 Loads mem16:32 into the interrupt descriptor table register.
LIDT mem16:64 OF01/3 Loads mem16:64 into the interrupt descriptor table register.

Related Instructions
LGDT, LLDT, LTR, SGDT, SIDT, SLDT, STR
rFLAGS Affected

None

320 LIDT

AMDA

24594 Rev. 3.10 February 2005 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X X The operand was a register.
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP | X X A memory address exceeded the data segment limit or was non-
canonical.
X X CPL was not 0.
X The new IDT base address was non-canonical.
A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

LIDT 321

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LLDT Load Local Descriptor Table Register

Loads the specified segment selector into the visible portion of the local descriptor
table (LDT). The processor uses the selector to locate the descriptor for the LDT in the
global descriptor table. It then loads this descriptor into the hidden portion of the
LDTR.

If the source operand is a null selector, the LDTR is marked invalid and all references
to descriptors in the LDT will generate a general protection exception (#GP), except
for the LAR, VERR, VERW or LSL instructions.

In legacy and compatibility modes, the LDT descriptor is 8 bytes long and contains a
32-bit base address.

In 64-bit mode, the LDT descriptor is 16-bytes long and contains a 64-bit base address.
The LDT descriptor type (02h) is redefined in 64-bit mode for use as the 16-byte LDT
descriptor.

This instruction must be executed in protected mode. It is only provided for use by
operating system software at CPL 0.

LLDT is a serializing instruction.

Mnemonic Opcode Description

LLDT reg/memi6 ~ OF 00 /2 Load the 16-bit segment selector into the local descriptor table register
and load the LDT descriptor from the GDT.

Related Instructions
LGDT, LIDT, LTR, SGDT, SIDT, SLDT, STR
rFLAGS Affected

None

322 LLDT

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Segment not present, X The LDT descriptor was marked not present.
#NP (selector)
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP X A memory address exceeded a data segment limit or was non-
canonical.
X CPL was not 0.
X A null data segment was used to reference memory.
General protection, #GP X The source selector did not point into the GDT.
(selector)
X The descriptor was beyond the GDT limit.
X The descriptor was not an LDT descriptor.
X The descriptor's extended attribute bits were not zero in 64-bit
mode.
X The new LDT base address was non-canonical.
Page fault, #PF X A page fault resulted from the execution of the instruction.

LLDT 323

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

LMSW Load Machine Status Word

Loads the lower four bits of the 16-bit register or memory operand into bits 3-0 of the
machine status word in register CR0O. Only the protection enabled (PE), monitor
coprocessor (MP), emulation (EM), and task switched (TS) bits of CR0 are modified.
Additionally, LMSW can set CR0.PE, but cannot clear it.

The LMSW instruction can be used only when the current privilege level is 0. It is only
provided for compatibility with early processors.

Use the MOV CRO instruction to load all 32 or 64 bits of CRO.

Mnemonic Opcode Description

LMSW reg/mem1i6 OF 01 /6 Load the lower 4 bits of the source into the lower 4 bits of CRO.

Related Instructions

MOV (CRn), SMSW

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X X CPL was not 0.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

324 Lmsw

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

LSL Load Segment Limit

Loads the segment limit from the segment descriptor specified by a 16-bit source
register or memory operand into a specified 16-bit, 32-bit, or 64-bit general-purpose
register and sets the zero (ZF) flag in the rFLAGS register if successful. LSL clears the
zero flag if the descriptor is invalid for any reason.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-
extended to 64 bits.

The LSL instruction checks that:

m the segment selector is not a null selector.
m the descriptor is within the GDT or LDT limit.

m the descriptor DPL is greater than or equal to both the CPL and RPL, or the seg-
ment is a conforming code segment.

m the descriptor type is valid for the LAR instruction. Valid descriptor types are
shown in the following table. LDT and TSS descriptors in 64-bit mode are only
valid if bits 12-8 of doubleword +12 are zero, as shown on page 111 of vol. 2 in Fig-
ure 4-22.

Valid Descriptor Type Description

Legacy Mode Long Mode

- - All code and data descriptors

1 - Available 16-bit TSS

2 2 LDT

3 - Busy 16-bit TSS

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

If the segment selector passes these checks and the segment limit is loaded into the
destination general-purpose register, the instruction sets the zero flag of the rFLAGS
register to 1. If the selector does not pass the checks, then LSL clears the zero flag to 0
and does not modify the destination.

The instruction calculates the segment limit to 32 bits, taking the 20-bit limit and the
granularity bit into account. When the operand size is 16 bits, it truncates the upper

LSL 325

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

16 bits of the 32-bit adjusted segment limit and loads the lower 16-bits into the target
register.

Mnemonic Opcode Description

LSL reg16, reg/mem16 OF 03 /r Loads a 16-bit general-purpose register with the segment limit for a
selector specified in a 16-bit memory or register operand.

LSL reg32, req/mem16 OF 03 /r Loads a 32-bit general-purpose register with the segment limit for a
selector specified in a 16-bit memory or register operand.

LSL reg64, reg/mem16 OF 03 /r Loads a 64-bit general-purpose register with the segment limit for a
selector specified in a 16-bit memory or register operand.

Related Instructions

ARPL, LAR, VERR, VERW
rFLAGS Affected
ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note: ffits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
X The extended attribute bits of a system descriptor was not zero in 64-
bit mode
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment
checking was enabled.

326 LSL

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

LTR Load Task Register

Loads the specified segment selector into the visible portion of the task register (TR).
The processor uses the selector to locate the descriptor for the TSS in the global
descriptor table. It then loads this descriptor into the hidden portion of TR. The TSS
descriptor in the GDT is marked busy, but no task switch is made.

If the source operand is null, a general protection exception (#GP) is generated.

In legacy and compatibility modes, the TSS descriptor is 8 bytes long and contains a
32-bit base address.

In 64-bit mode, the instruction references a 64-bit descriptor to load a 64-bit base
address. The TSS type (09H) is redefined in 64-bit mode for use as the 16-byte TSS
descriptor.

This instruction must be executed in protected mode when the current privilege level
is 0. It is only provided for use by operating system software.

The operand size attribute has no effect on this instruction.

LTR is a serializing instruction.

Mnemonic Opcode Description
LTR reg/mem16 0F 00/3 Load the 16-bit segment selector into the task register and load the TSS
descriptor from the GDT.

Related Instructions
LGDT, LIDT, LLDT, STR, SGDT, SIDT, SLDT
rFLAGS Affected

None

LTR 327

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected mode.
Segment not present, X The TSS descriptor was marked not present.
#NP (selector)
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP X A memory address exceeded a data segment limit or was non-
canonical.

X CPL was not 0.
X A null data segment was used to reference memory.

X The new TSS selector was a null selector.

General protection, #GP X The source selector did not point into the GDT.
(selector)
X The descriptor was beyond the GDT limit.

X The descriptor was not an available TSS descriptor.

X The descriptor's extended attribute bits were not zero in 64-bit

mode.
X The new TSS base address was non-canonical.
Page fault, #PF X A page fault resulted from the execution of the instruction.

328 LTR

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MOV(CRn) Move to/from Control Registers

Moves the contents of a 32-bit or 64-bit general-purpose register to a control register
or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix.
In non-64-bit mode, the operand size is fixed at 32 bits and the upper 32 bits of the
destination are forced to 0.

CRO maintains the state of various control bits. CR2 and CR3 are used for page
translation. CR4 holds various feature enable bits. CR8 is used to prioritize external
interrupts. CR1, CR5, CR6, CR7, and CR9 through CR15 are all reserved and raise an

undefined opcode exception (#UD) if referenced.

CRS8 can also be read and modified using the task priority register described in
“System-Control Registers” in Volume 2.

CRS8 can be read and written in 64-bit mode, using a REX prefix. CR8 can be read and
written in legacy mode using the MOV (CRn) opcode, using a LOCK prefix instead of a
REX prefix to specify the additional opcode bit. To verify whether the LOCK prefix
can be used in this way, check the status of ECX bit 4 returned by CPUID standard
function 80000001h.

This instruction is always treated as a register-to-register (MOD = 11) instruction,
regardless of the encoding of the MOD field in the MODR/M byte.

MOV (CRn) is a privileged instruction and must always be executed at CPL = 0.

MOV (CRn) is a serializing instruction.

Mnemonic Opcode Description
MOV CRn, reg32 OF 22 /r Move the contents of a 32-bit register to CRn
MOV CRn, reg64 OF22/r Move the contents of a 64-bit register to CRn
MOV reg32,CRn OF20/r Move the contents of CRn to a 32-bit register.
MOV reg64,CRn OF 20 /r Move the contents of CRn to a 64-bit register.
Note:

CRO, CR2, CR3, CR4, and CR8 are the only registers to which this instruction applies. See text for details.

MOV(CRn) 329

AMDA

AMDG64 Technology

Related Instructions

CLTS, LMSW, SMSW

24594 Rev. 3.10 February 2005

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid Instruction, X X X An illegal control register was referenced (CR1, CR5-CR7,
#UD CR9-CR15).
General protection, X X CPL was not 0.
#GP

X X An attempt was made to set CR0.PG =1 and CRO.PE = 0.

X X An attempt was made to set CR0.CD = 0 and CRO.NW = 1.

X X Reserved bits were set in the page-directory pointers table (used in
the legacy extended physical addressing mode) and the instruction
modified CRO, CR3, or CR4.

X X An attempt was made to write 1 to any reserved bit in CR0, CR3, CR4
or CR8.

X X An attempt was made to set CR0.PG while long mode was enabled
(EFER.LME = 1), but paging address extensions were disabled
(CR4.PAE=0).

X An attempt was made to clear CR4.PAE while long mode was active
(EFER.LMA = 1).
330 MOV(CRn)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

MOV(DRn) Move to/from Debug Registers

Moves the contents of a debug register into a 32-bit or 64-bit general-purpose register
or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix.
In non-64-bit mode, the operand size is fixed at 32-bits and the upper 32 bits of the
destination are forced to 0.

DRO through DR3 are linear breakpoint address registers. DR6 is the debug status
register and DR7 is the debug control register. DR4 and DR5 are aliased to DR6 and
DRY7 if CR4.DE = 0, and are reserved if CR4.DE =1.

DRS8 through DR15 are reserved and generate an undefined opcode exception if
referenced.

These instructions are privileged and must be executed at CPL 0.
The MOV DRn, reg32and MOV DRn, reg64 instructions are serializing instructions.

The MOV(DR) instruction is always treated as a register-to-register (MOD = 11)
instruction, regardless of the encoding of the MOD field in the MODR/M byte.

See “Debug and Performance Resources” in Volume 2 for details.

Mnemonic Opcode Description
MOV reg32, DRn OF 21 /r Move the contents of DRn to a 32-bit register.
MOV reg64, DRn OF 21 /r Move the contents of DRn to a 64-bit register.
MOV DRn, reg32 OF 23 /r Move the contents of a 32-bit register to DRn.
MOV DRn, reg64 OF 23 /r Move the contents of a 64-bit register to DRn.

Related Instructions
None

rFLAGS Affected

None

MOV(DRn) 331

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Debug, #DB X X A debug register was referenced while the general detect (GD) bit
in DR7 was set.
Invalid opcode, #UD X X DR4 or DR5 was referenced while the debug extensions (DE) bit in
CR4 was set.

X An illegal debug register (DR8-DR15) was referenced.
General protection, #GP X X CPL was not 0.

X A 1 was written to any of the upper 32 bits of DR6 or DR7 in 64-bit
mode.

332 MOV(DRn)

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

RDMSR Read Model-Specific Register

Loads the contents of a 64-bit model-specific register (MSR) specified in the ECX
register into registers EDX:EAX. The EDX register receives the high-order 32 bits and
the EAX register receives the low order bits. The RDMSR instruction ignores operand
size; ECX always holds the MSR number, and EDX:EAX holds the data. If a model-
specific register has fewer than 64 bits, the unimplemented bit positions loaded into
the destination registers are undefined.

This instruction must be executed at a privilege level of 0 or a general protection
exception (#GP) will be raised. This exception is also generated if a reserved or
unimplemented model-specific register is specified in ECX.

Use the CPUID instruction to determine if this instruction is supported.
RDMSR is a serializing instruction.

For more information about model-specific registers, see the documentation for
various hardware implementations and Volume 2, System Programming.

Mnemonic Opcode Description

RDMSR OF 32 Copy MSR specified by ECX into EDX:EAX.

Related Instructions

WRMSR, RDTSC, RDPMC

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The RDMSR instruction is not supported, as indicated by EDX bit 5
returned by CPUID standard function 1 or extended function
8000_0001h.
General protection, X X CPL was not 0.
#GP
X X The value in ECX specifies a reserved or unimplemented MSR
address.

RDMSR 333

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

RDPMC Read Performance-Monitoring Counter

Loads the contents of a 64-bit performance counter register (PerfCtrn) specified in
the ECX register into registers EDX:EAX. The EDX register receives the high-order
32 bits and the EAX register receives the low order 32 bits. The RDPMC instruction
ignores operand size; ECX always holds the number of the PerfCtr, and EDX:EAX
holds the data.

The AMDG64 architecture currently supports four performance counters: PerfCtr0
through PerfCtr3. To specify the performance counter number in ECX, specify the
counter number (0000_0000h-0000_0003h), rather than the performance counter
MSR address (C001_0004h-C001_0007h).

Programs running at any privilege level can read performance monitor counters if the
PCE flag in CR4 is set to 1; otherwise this instruction must be executed at a privilege
level of 0.

This instruction is not serializing. Therefore, there is no guarantee that all instructions
have completed at the time the performance counter is read.

For more information about performance-counter registers, see the documentation for
various hardware implementations and “Performance Counters” in Volume 2.

Mnemonic Opcode Description
RDPMC OF 33 Copy the performance monitor counter specified by ECX
into EDX:EAX.

Related Instructions
RDMSR, WRMSR
rFLAGS Affected

None

334 RDPMC

AMDA

24594 Rev. 3.10 February 2005

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General Protection, X X X The value in ECX specified an unimplemented performance counter
#GP number.
X X CPL was not 0 and CR4.PCE =0.

RDPMC

335

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

RDTSC Read Time-Stamp Counter

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX.

The time-stamp counter is contained in a 64-bit model-specific register (MSR). The
processor sets the counter to 0 upon reset and increments the counter every clock
cycle. INIT does not modify the TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into
the EAX register. This instruction ignores operand size.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSC instruction can
only be used at privilege level 0. If the TSD flag is 0, this instruction can be used at any
privilege level.

This instruction is not serializing. Therefore, there is no guarantee that all instructions
have completed at the time the time-stamp counter is read.

Mnemonic Opcode Description

RDTSC OF 31 Copy the time-stamp counter into EDX:EAX.

Related Instructions

RDTSCP, RDMSR, WRMSR

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X X The RDTSC instruction is not supported, as indicated by EDX bit 4
returned by CPUID standard function 1 or extended function
8000_0001h.
General protection, #GP X X CPL was not 0 and CR4.TSD = 1.

336 RDTSC

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

RDTSCP Read Time-Stamp Counter and Processor ID

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX,
and loads the value of TSC_AUX into ECX. This instruction ignores operand size.

The time-stamp counter is contained in a 64-bit model-specific register (MSR). The
processor sets the counter to 0 upon reset and increments the counter every clock
cycle. INIT does not modify the TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into
the EAX register.

The TSC_AUX value is contained in the low-order 32 bits of the TSC_AUX register
(MSR address C000_0103h). This MSR is initialized by privileged software to any
meaningful value, such as a processor ID, that software wants to associate with the
returned TSC value.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSCP instruction
can only be used at privilege level 0. If the TSD flag is 0, this instruction can be used at
any privilege level.

Unlike the RDTSC instruction, RDTSCP is a serializing instruction.

Use the CPUID instruction to verify support for this instruction.

Mnemonic Opcode Description

RDTSCP OF 01 F9 Copy the time-stamp counter into EDX:EAX. and the
TSC_AUX register into ECX.

Related Instructions
RDTSC

rFLAGS Affected

None

RDTSCP 337

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X X The RDTSCP instruction is not supported, as indicated by EDX bit 27
returned by CPUID extended function 8000_0001h.
General protection, #GP X X CPL was not 0 and CR4.TSD =1.

338

RDTSCP

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

RSM Resume from System Management Mode

Resumes an operating system or application procedure previously interrupted by a
system management interrupt (SMI). The processor state is restored from the
information saved when the SMI was taken. If the processor detects invalid state
information in the system management mode (SMM) save area during RSM, it goes
into a shutdown state.

RSM will shutdown if any of the following conditions are found in the save map (SSM):

m Anillegal combination of flags in CR0O (CR0.PG =1 and CRO.PE =0, or CRO.NW =
1 and CRO.CD = 0).

m A reserved bit in CR0O, CR3, CR4, DR6, DR7, or the extended feature enable regis-
ter (EFER) is set to 1.

m The following bit combination occurs: EFER.LME = 1, CR0.PG =1, CR4.PAE = 0.

m The following bit combination occurs: EFER.LME =1, CR0.PG =1, CR4.PAE =1,
CSDh=1,CS.L=1.

s SMM revision field has been modified.
The AMDG64 architecture uses a new 64-bit SMM state-save memory image. This 64-bit

save-state map is used in all modes, regardless of mode. See “System-Management
Mode” in Volume 2 for details.

Mnemonic Opcode Description

RSM OF AA Resume operation of an interrupted program.

Related Instructions

None

RSM 339

AMDA
AMDG64 Technology 24594 Rev. 3.10 February 2005

rFLAGS Affected

All flags are restored from the state-save map (SSM).

ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M| M M M M M M M M M M| M

21 [20 | 19 | 18 | 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The processor was not in System Management Mode (SMM).

340 RSM

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SGDT Store Global Descriptor Table Register

Stores the global descriptor table register (GDTR) into the destination operand. In
legacy and compatibility mode, the destination operand is six bytes; in 64-bit mode, it
is 10 bytes. In all modes, operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 4 bytes specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 8 bytes specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at
any privilege level.

Mnemonic Opcode Description
SGDT mem16:32 OF 01 /0 Store global descriptor table register to memory.
SGDT mem16:64 OF 01 /0 Store global descriptor table register to memory.

Related Instructions

SIDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The operand was a register.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

SGDT 341

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

342

SGDT

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SIDT Store Interrupt Descriptor Table Register

Stores the interrupt descriptor table register (IDTR) in the destination operand. In
legacy and compatibility mode, the destination operand is 6 bytes; in 64-bit mode it is
10 bytes. In all modes, operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 4 bytes specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 8 bytes specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at
any privilege level.

Mnemonic Opcode Description
SIDT mem16:32 OF 01 /1 Store interrupt descriptor table register to memory.
SIDT mem16:64 OF 01 /1 Store interrupt descriptor table register to memory.

Related Instructions

SGDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The operand was a register.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

SIDT 343

AMDA

AMDG64 Technology 24594 Rev. 3.10 February 2005
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

344

SIDT

AMDA
24594 Rev. 3.10 February 2005 AMDG64 Technology

SLDT Store Local Descriptor Table Register

Stores the local descriptor table (LDT) selector to a register or memory destination
operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit
general purpose register, depending on operand size.

If the destination operand is a memory location, the segment selector is written to
memory as a 16-bit value, regardless of operand size.

This SLDT instruction can only be used in protected mode, but it can be executed at
any privilege level.

Mnemonic Opcode Description

SLDT reg16 0F 00 /0 Store the segment selector from the local descriptor table
register to a 16-bit register.

SLDT reg32 0F 00 /0 Store the segment selector from the local descriptor table
register to a 32-bit register.

SLDT reg64 0F 00 /0 Store the segment selector from the local descriptor table
register to a 64-bit register.

SLDT mem